Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407794, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896057

RESUMO

Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.

2.
Macromolecules ; 57(9): 4199-4207, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38765502

RESUMO

Using CO2 polycarbonates as engineering thermoplastics has been limited by their mechanical performances, particularly their brittleness. Poly(cyclohexene carbonate) (PCHC) has a high tensile strength (40 MPa) but is very brittle (elongation at break <3%), which limits both its processing and applications. Here, well-defined, high molar mass CO2 terpolymers are prepared from cyclohexene oxide (CHO), cyclopentene oxide (CPO), and CO2 by using a Zn(II)Mg(II) catalyst. In the catalysis, CHO and CPO show reactivity ratios of 1.53 and 0.08 with CO2, respectively; as such, the terpolymers have gradient structures. The poly(cyclohexene carbonate)-grad-poly(cyclopentene carbonate) (PCHC-grad-PCPC) have high molar masses (86 < Mn < 164 kg mol-1, DM < 1.22) and good thermal stability (Td > 250 °C). All the polymers are amorphous with a single, high glass transition temperature (96 < Tg < 108 °C). The polymer entanglement molar masses, determined using dynamic mechanical analyses, range from 4 < Me < 23 kg mol-1 depending on the polymer composition (PCHC:PCPC). These polymers show superior mechanical performance to PCHC; specifically the lead material (PCHC0.28-grad-PCPC0.72) shows 25% greater tensile strength and 160% higher tensile toughness. These new plastics are recycled, using cycles of reprocessing by compression molding (150 °C, 1.2 ton m-2, 60 min), four times without any loss in mechanical properties. They are also efficiently chemically recycled to selectively yield the two epoxide monomers, CHO and CPO, as well as carbon dioxide, with high activity (TOF = 270-1653 h-1, 140 °C, 120 min). The isolated recycled monomers are repolymerized to form thermoplastic showing the same material properties. The findings highlight the benefits of the terpolymer strategy to deliver thermoplastics combining the beneficial low entanglement molar mass, high glass transition temperatures, and tensile strengths; PCHC properties are significantly improved by incorporating small quantities (23 mol %) of cyclopentene carbonate linkages. The general strategy of designing terpolymers to include chain segments of low entanglement molar mass may help to toughen other brittle and renewably sourced plastics.

3.
Angew Chem Int Ed Engl ; : e202408246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819775

RESUMO

Improving composite cathode function is key to the success of the solid-state battery. Maximizing attainable cathode capacity and retention requires integrating suitable polymeric binders that retain a sufficiently high ionic conductivity and long-term chemo-mechanical stability of the cathode active material-solid-electrolyte-carbon mixture. Herein, we report block copolymer networks composed of lithium borate polycarbonates and poly(ethylene oxide) that improved the capacity (200 mA h g-1 at 1.75 mA cm-2) and capacity retention (94% over 300 cycles) of all-solid-state composite cathodes with nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode active material, Li6PS5Cl solid electrolyte, and carbon. Tetrahedral B(OR)2(OH)2- anions immobilized on the polycarbonate segments provide hydrogen-bonding chain crosslinking and selective Li-counterion conductivity, parameterized by Li-ion transference numbers close to unity (tLi+ ~ 0.94). With 90 wt% polycarbonate content and a flexible low glass transition temperature backbone, the single-ion conductors achieved high Li-ion conductivities of 0.2 mS cm-1 at 30°C. The work should inform future binder design for improving the processability of cathode composites towards commercialising solid-state batteries, and allow use in other cell configurations, such as lithium-sulphur cathode designs.

4.
J Am Chem Soc ; 146(15): 10451-10464, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589774

RESUMO

While outstanding catalysts are known for the ring-opening copolymerization (ROCOP) of CO2 and propene oxide (PO), few are reported at low CO2 pressure. Here, a new series of Co(III)M(I) heterodinuclear catalysts are compared. The Co(III)K(I) complex shows the best activity (TOF = 1728 h-1) and selectivity (>90% polymer, >99% CO2) and is highly effective at low pressures (<10 bar). CO2 insertion is a prerate determining chemical equilibrium step. At low pressures, the concentration of the active catalyst depends on CO2 pressure; above 12 bar, its concentration is saturated, and rates are independent of pressure, allowing the equilibrium constant to be quantified for the first time (Keq = 1.27 M-1). A unified rate law, applicable under all operating conditions, is presented. As proof of potential, published data for leading literature catalysts are reinterpreted and the CO2 equilibrium constants estimated, showing that this unified rate law applies to other systems.

5.
J Am Chem Soc ; 146(12): 8381-8393, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484170

RESUMO

Using carbon dioxide (CO2) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO2/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO2; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight (Mn) values from 4 to 130 kg mol-1, with narrow, monomodal distributions. It is used in the ROCOP of CO2 with bicyclic epoxides to produce a series of samples, each with Mn > 100 kg mol-1, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < Tg < 126 °C, by differential scanning calorimetry) and high thermal stability (Td > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight (Me)n and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO2. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h-1 and >99% selectivity for cyclopentene oxide and CO2.

6.
ACS Catal ; 14(3): 1363-1374, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38327648

RESUMO

Low molar mass, hydroxyl end-capped polymers, often termed "polyols," are widely used to make polyurethanes, resins, and coatings and as surfactants in liquid formulations. Epoxide/anhydride ring-opening copolymerization (ROCOP) is a controlled polymerization route to make them, and its viability depends upon catalyst selection. In the catalysis, the polyester polyol molar masses and end-groups are controlled by adding specific but excess quantities of diols (vs catalyst), known as the chain transfer agent (CTA), to the polymerizations, but many of the best current catalysts are inhibited or even deactivated by alcohols. Herein, a series of air-stable Al(III)/K(I) heterodinuclear polymerization catalysts show rates and selectivity at the upper end of the field. They also show remarkable increases in activity, with good selectivity and control, as quantities of diol are increased from 10-400 equiv. The reactions are accelerated by alcohols, and simultaneously, their use allows for the production of hydroxy telechelic poly/oligoesters (400 < Mn (g mol-1) < 20,400, D < 1.19). For example, cyclohexene oxide (CHO)/phthalic anhydride (PA) ROCOP, using the best Al(III)/K(I) catalyst with 200 equiv of diol, shows a turnover frequency (TOF) of 1890 h-1, which is 4.4× higher than equivalent reactions without any diol (Catalyst/Diol/PA/CHO = 1:10-400:400:2000, 100 °C). In all cases, the catalysis is well controlled and highly ester linkage selective (ester linkages >99%) and operates effectively using bicyclic and/or biobased anhydrides with bicyclic or flexible alkylene epoxides. These catalysts are recommended for future production and application development using polyester polyols.

7.
Chem Sci ; 15(7): 2371-2379, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362415

RESUMO

Optimising the composite cathode for next-generation, safe solid-state batteries with inorganic solid electrolytes remains a key challenge towards commercialisation and cell performance. Tackling this issue requires the design of suitable polymer binders for electrode processability and long-term solid-solid interfacial stability. Here, block-polyester/carbonates are systematically designed as Li-ion conducting, high-voltage stable binders for cathode composites comprising of single-crystal LiNi0.8Mn0.1Co0.1O2 cathodes, Li6PS5Cl solid electrolyte and carbon nanofibres. Compared to traditional fluorinated polymer binders, improved discharge capacities (186 mA h g-1) and capacity retention (96.7% over 200 cycles) are achieved. The nature of the new binder electrolytes also enables its separation and complete recycling after use. ABA- and AB-polymeric architectures are compared where the A-blocks are mechanical modifiers, and the B-block facilitates Li-ion transport. This reveals that the conductivity and mechanical properties of the ABA-type are more suited for binder application. Further, catalysed switching between CO2/epoxide A-polycarbonate (PC) synthesis and B-poly(carbonate-r-ester) formation employing caprolactone (CL) and trimethylene carbonate (TMC) identifies an optimal molar mass (50 kg mol-1) and composition (wPC 0.35). This polymer electrolyte binder shows impressive oxidative stability (5.2 V), suitable ionic conductivity (2.2 × 10-4 S cm-1 at 60 °C), and compliant viscoelastic properties for fabrication into high-performance solid composite cathodes. This work presents an attractive route to optimising polymer binder properties using controlled polymerisation strategies combining cyclic monomer (CL, TMC) ring-opening polymerisation and epoxide/CO2 ring-opening copolymerisation. It should also prompt further examination of polycarbonate/ester-based materials with today's most relevant yet demanding high-voltage cathodes and sensitive sulfide-based solid electrolytes.

8.
J Am Chem Soc ; 146(6): 3816-3824, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301241

RESUMO

The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)2, M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, 19F NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies.

9.
Nature ; 626(7997): 45-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297170

RESUMO

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Assuntos
Poluição Ambiental , Objetivos , Plásticos , Reciclagem , Desenvolvimento Sustentável , Biomassa , Dióxido de Carbono/análise , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Poluição Ambiental/economia , Poluição Ambiental/legislação & jurisprudência , Poluição Ambiental/prevenção & controle , Poluição Ambiental/estatística & dados numéricos , Combustíveis Fósseis , Aquecimento Global/prevenção & controle , Gases de Efeito Estufa/análise , Plásticos/síntese química , Plásticos/economia , Plásticos/metabolismo , Plásticos/provisão & distribuição , Reciclagem/economia , Reciclagem/legislação & jurisprudência , Reciclagem/métodos , Reciclagem/tendências , Energia Renovável , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Tecnologia/economia , Tecnologia/legislação & jurisprudência , Tecnologia/métodos , Tecnologia/tendências
11.
ACS Catal ; 13(24): 15770-15778, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125977

RESUMO

Polymer chemical recycling to monomers (CRM) is important to help achieve a circular plastic economy, but the "rules" governing catalyst design for such processes remain unclear. Here, carbon dioxide-derived polycarbonates undergo CRM to produce epoxides and carbon dioxide. A series of dinuclear catalysts, Mg(II)M(II) where M(II) = Mg, Mn, Fe, Co, Ni, Cu, and Zn, are compared for poly(cyclohexene carbonate) depolymerizations. The recycling is conducted in the solid state, at 140 °C monitored using thermal gravimetric analyses, or performed at larger-scale using laboratory glassware. The most active catalysts are, in order of decreasing rate, Mg(II)Co(II), Mg(II)Ni(II), and Mg(II)Zn(II), with the highest activity reaching 8100 h-1 and with >99% selectivity for cyclohexene oxide. Both the activity and selectivity values are the highest yet reported in this field, and the catalysts operate at low loadings and moderate temperatures (from 1:300 to 1:5000, 140 °C). For the best heterodinuclear catalysts, the depolymerization kinetics and activation barriers are determined. The rates in both reverse depolymerization and forward CHO/CO2 polymerization catalysis show broadly similar trends, but the processes feature different intermediates; forward polymerization depends upon a metal-carbonate intermediate, while reverse depolymerization depends upon a metal-alkoxide intermediate. These dinuclear catalysts are attractive for the chemical recycling of carbon dioxide-derived plastics and should be prioritized for recycling of other oxygenated polymers and copolymers, including polyesters and polyethers. This work provides insights into the factors controlling depolymerization catalysis and steers future recycling catalyst design toward exploitation of lightweight and abundant s-block metals, such as Mg(II).

12.
Nat Commun ; 14(1): 4783, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553344

RESUMO

Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.

13.
Angew Chem Int Ed Engl ; 62(37): e202308378, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37409487

RESUMO

Carbon dioxide copolymerization is a front-runner CO2 utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO2 ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h-1 and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.

14.
J Am Chem Soc ; 145(25): 13888-13900, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311063

RESUMO

Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.

15.
Adv Mater ; 35(36): e2302825, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37201907

RESUMO

Utilizing carbon dioxide (CO2 ) to make polycarbonates through the ring-opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well-defined structures and allow for copolymerization with biomass-derived monomers; however, the resulting material properties are underinvestigated. Here, new types of CO2 -derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re-design. These TPEs combine high glass transition temperature (Tg ) amorphous blocks comprising CO2 -derived poly(carbonates) (A-block), with low Tg poly(ε-decalactone), from castor oil, (B-block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal-carboxylates where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring <1 wt% metal, show tunable thermal (Tg ), and mechanical (elongation at break, elasticity, creep-resistance) properties. The best elastomers show >50-fold higher Young's modulus and 21-times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (-20 to 200 °C), high creep-resistance and yet remain recyclable. In the future, these materials may substitute high-volume petrochemical elastomers and be utilized in high-growth fields like medicine, robotics, and electronics.

16.
Chemistry ; 29(35): e202300228, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078972

RESUMO

This work applies organometallic routes to copper(0/I) nanoparticles and describes how to match ligand chemistries with different material compositions. The syntheses involve reacting an organo-copper precursor, mesitylcopper(I) [CuMes]z (z=4, 5), at low temperatures and in organic solvents, with hydrogen, air or hydrogen sulfide to deliver Cu, Cu2 O or Cu2 S nanoparticles. Use of sub-stoichiometric quantities of protonated ligand (pro-ligand; 0.1-0.2 equivalents vs. [CuMes]z ) allows saturation of surface coordination sites but avoids excess pro-ligand contaminating the nanoparticle solutions. The pro-ligands are nonanoic acid (HO2 CR1 ), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (HO2 CR2 ) or di(thio)nonanoic acid, (HS2 CR1 ), and are matched to the metallic, oxide or sulfide nanoparticles. Ligand exchange reactions reveal that copper(0) nanoparticles may be coordinated by carboxylate or di(thio)carboxylate ligands, but Cu2 O is preferentially coordinated by carboxylate ligands and Cu2 S by di(thio)carboxylate ligands. This work highlights the opportunities for organometallic routes to well-defined nanoparticles and the need for appropriate ligand selection.


Assuntos
Cobre , Nanopartículas , Ligantes , Sulfetos
17.
Chemistry ; 29(33): e202300608, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36929530

RESUMO

A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.


Assuntos
Metaloporfirinas , Porfirinas , Rotaxanos , Modelos Moleculares , Rotaxanos/química , Bases de Lewis , Ânions/química
18.
Angew Chem Int Ed Engl ; 61(47): e202210748, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36178774

RESUMO

Thermoplastic elastomers based on polyesters/carbonates have the potential to maximize recyclability, degradability and renewable resource use. However, they often underperform and suffer from the familiar trade-off between strength and extensibility. Herein, we report well-defined reprocessable poly(ester-b-carbonate-b-ester) elastomers with impressive tensile strengths (60 MPa), elasticity (>800 %) and recovery (95 %). Plus, the ester/carbonate linkages are fully degradable and enable chemical recycling. The superior performances are attributed to three features: (1) Highly entangled soft segments; (2) Fully reversible strain-induced crystallization and (3) Precisely placed ZnII -carboxylates dynamically crosslinking the hard domains. The one-pot synthesis couples controlled cyclic monomer ring-opening polymerization and alternating epoxide/anhydride ring-opening copolymerization. Efficient convresion to ionomers is achieved by reacting vinyl-epoxides to install ZnII -carboxylates.

19.
J Am Chem Soc ; 144(40): 18444-18449, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36169420

RESUMO

Polymer chemical recycling to monomers (CRM) could help improve polymer sustainability, but its implementation requires much better understanding of depolymerization catalysis, ensuring high rates and selectivity. Here, a heterodinuclear [Mg(II)Co(II)] catalyst is applied for CRM of aliphatic polycarbonates, including poly(cyclohexene carbonate) (PCHC), to epoxides and carbon dioxide using solid-state conditions, in contrast with many other CRM strategies that rely on high dilution. The depolymerizations are performed in the solid state giving very high activity and selectivity (PCHC, TOF = 25700 h-1, CHO selectivity >99 %, 0.02 mol %, 140 °C). Reactions may also be performed in air without impacting on the rate or selectivity of epoxide formation. The depolymerization can be performed on a 2 g scale to isolate the epoxides in up to 95 % yield with >99 % selectivity. In addition, the catalyst can be re-used four times without compromising its productivity or selectivity.


Assuntos
Dióxido de Carbono , Compostos de Epóxi , Carbonatos , Catálise , Cimento de Policarboxilato , Polímeros
20.
J Am Chem Soc ; 144(39): 17929-17938, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130075

RESUMO

A combined computational and experimental investigation into the catalytic cycle of carbon dioxide and propylene oxide ring-opening copolymerization is presented using a Co(III)K(I) heterodinuclear complex (Deacy, A. C. Co(III)/Alkali-Metal(I) Heterodinuclear Catalysts for the Ring-Opening Copolymerization of CO2 and Propylene Oxide. J. Am. Chem. Soc. 2020, 142(45), 19150-19160). The complex is a rare example of a dinuclear catalyst, which is active for the copolymerization of CO2 and propylene oxide, a large-scale commercial product. Understanding the mechanisms for both product and byproduct formation is essential for rational catalyst improvements, but there are very few other mechanistic studies using these monomers. The investigation suggests that cobalt serves both to activate propylene oxide and to stabilize the catalytic intermediates, while potassium provides a transient carbonate nucleophile that ring-opens the activated propylene oxide. Density functional theory (DFT) calculations indicate that reverse roles for the metals have inaccessibly high energy barriers and are unlikely to occur under experimental conditions. The rate-determining step is calculated as the ring opening of the propylene oxide (ΔGcalc† = +22.2 kcal mol-1); consistent with experimental measurements (ΔGexp† = +22.1 kcal mol-1, 50 °C). The calculated barrier to the selectivity limiting step, i.e., backbiting from the alkoxide intermediate to form propylene carbonate (ΔGcalc† = +21.4 kcal mol-1), is competitive with the barrier to epoxide ring opening (ΔGcalc† = +22.2 kcal mol-1) implicating an equilibrium between alkoxide and carbonate intermediates. This idea is tested experimentally and is controlled by carbon dioxide pressure or temperature to moderate selectivity. The catalytic mechanism, supported by theoretical and experimental investigations, should help to guide future catalyst design and optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA