Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Death Dis ; 14(4): 240, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019881

RESUMO

Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.


Assuntos
Miócitos Cardíacos , Transdução de Sinais , Animais , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/metabolismo , Mamíferos
2.
Sci Rep ; 13(1): 2337, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759538

RESUMO

The neuroendocrine peptide somatostatin (SST) has long been thought of as influencing the deposition of the amyloid ß peptide (Aß) in Alzheimer's disease (AD). Missing have been in vivo data in a relevant Aß amyloidosis model. Here we crossed AppNL-F/NL-F mice with Sst-deficient mice to assess if and how the presence of Sst influences pathological hallmarks of Aß amyloidosis. We found that Sst had no influence on whole brain neprilysin transcript, protein or activity levels, an observation that cannot be accounted for by a compensatory upregulation of the Sst paralog, cortistatin (Cort), that we observed in 15-month-old Sst-deficient mice. Sst-deficiency led to a subtle but significant increase in the density of cortical Aß amyloid plaques. Follow-on western blot analyses of whole brain extracts indicated that Sst interferes with early steps of Aß assembly that manifest in the appearance of SDS-stable smears of 55-150 kDa in Sst null brain samples. As expected, no effect of Sst on tau steady-state levels or its phosphorylation were observed. Results from this study are easier reconciled with an emerging body of data that point toward Sst affecting Aß amyloid plaque formation through direct interference with Aß aggregation rather than through its effects on neprilysin expression.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Neprilisina/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Somatostatina/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499150

RESUMO

Several strands of investigation have established that a reduction in the levels of the cellular prion protein (PrPC) is a promising avenue for the treatment of prion diseases. We recently described an indirect approach for reducing PrPC levels that targets Na,K-ATPases (NKAs) with cardiac glycosides (CGs), causing cells to respond with the degradation of these pumps and nearby molecules, including PrPC. Because the therapeutic window of widely used CGs is narrow and their brain bioavailability is low, we set out to identify a CG with improved pharmacological properties for this indication. Starting with the CG known as oleandrin, we combined in silico modeling of CG binding poses within human NKA folds, CG structure-activity relationship (SAR) data, and predicted blood-brain barrier (BBB) penetrance scores to identify CG derivatives with improved characteristics. Focusing on C4'-dehydro-oleandrin as a chemically accessible shortlisted CG derivative, we show that it reaches four times higher levels in the brain than in the heart one day after subcutaneous administration, exhibits promising pharmacological properties, and suppresses steady-state PrPC levels by 84% in immortalized human cells that have been differentiated to acquire neural or astrocytic characteristics. Finally, we validate that the mechanism of action of this approach for reducing cell surface PrPC levels requires C4'-dehydro-oleandrin to engage with its cognate binding pocket within the NKA α subunit. The improved brain bioavailability of C4'-dehydro-oleandrin, combined with its relatively low toxicity, make this compound an attractive lead for brain CG indications and recommends its further exploration for the treatment of prion diseases.


Assuntos
Glicosídeos Cardíacos , Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Glicosídeos Cardíacos/uso terapêutico , Príons/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo
4.
PLoS One ; 17(7): e0270915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776750

RESUMO

It is widely anticipated that a reduction of brain levels of the cellular prion protein (PrPC) can prolong survival in a group of neurodegenerative diseases known as prion diseases. To date, efforts to decrease steady-state PrPC levels by targeting this protein directly with small molecule drug-like compounds have largely been unsuccessful. Recently, we reported Na,K-ATPases to reside in immediate proximity to PrPC in the brain, unlocking an opportunity for an indirect PrPC targeting approach that capitalizes on the availability of potent cardiac glycosides (CGs). Here, we report that exposure of human co-cultures of neurons and astrocytes to non-toxic nanomolar levels of CGs causes profound reductions in PrPC levels. The mechanism of action underpinning this outcome relies primarily on a subset of CGs engaging the ATP1A1 isoform, one of three α subunits of Na,K-ATPases expressed in brain cells. Upon CG docking to ATP1A1, the ligand receptor complex, and PrPC along with it, is internalized by the cell. Subsequently, PrPC is channeled to the lysosomal compartment where it is digested in a manner that can be rescued by silencing the cysteine protease cathepsin B. These data signify that the repurposing of CGs may be beneficial for the treatment of prion disorders.


Assuntos
Glicosídeos Cardíacos , Doenças Priônicas , Príons , Adenosina Trifosfatases , Glicosídeos Cardíacos/farmacologia , Humanos , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo
5.
PLoS One ; 16(11): e0258682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847154

RESUMO

The prion protein (PrP) is best known for its ability to cause fatal neurodegenerative diseases in humans and animals. Here, we revisited its molecular environment in the brain using a well-developed affinity-capture mass spectrometry workflow that offers robust relative quantitation. The analysis confirmed many previously reported interactions. It also pointed toward a profound enrichment of Na,K-ATPases (NKAs) in proximity to cellular PrP (PrPC). Follow-on work validated the interaction, demonstrated partial co-localization of the ATP1A1 and PrPC, and revealed that cells exposed to cardiac glycoside (CG) inhibitors of NKAs exhibit correlated changes to the steady-state levels of both proteins. Moreover, the presence of PrPC was observed to promote the ion uptake activity of NKAs in a human co-culture paradigm of differentiated neurons and glia cells, and in mouse neuroblastoma cells. Consistent with this finding, changes in the expression of 5'-nucleotidase that manifest in wild-type cells in response to CG exposure can also be observed in untreated PrPC-deficient cells. Finally, the endoproteolytic cleavage of the glial fibrillary acidic protein, a hallmark of late-stage prion disease, can also be induced by CGs, raising the prospect that a loss of NKA activity may contribute to the pathobiology of prion diseases.


Assuntos
Proteínas Priônicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , 5'-Nucleotidase/metabolismo , Animais , Encéfalo/metabolismo , Calpaína/metabolismo , Glicosídeos Cardíacos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Modelos Biológicos , Proteínas Priônicas/deficiência , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes
6.
PLoS Pathog ; 17(10): e1009991, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610054

RESUMO

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids ß-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids ß-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.


Assuntos
Glucose/metabolismo , Degeneração Neural/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estresse Oxidativo/fisiologia , Proteínas Quinases/metabolismo
7.
Biol Rev Camb Philos Soc ; 96(5): 1907-1932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33960099

RESUMO

The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Priônicas , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Processamento de Proteína Pós-Traducional
8.
J Biol Chem ; 296: 100118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234594

RESUMO

Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.


Assuntos
Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoprecipitação , Neuroproteção/fisiologia , Fosfatidilinositol 3-Quinases/química , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a RNA/genética , Espectrometria de Massas em Tandem
9.
Sci Rep ; 9(1): 16238, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700063

RESUMO

Protein interactions of Tau are of interest in efforts to decipher pathogenesis in Alzheimer's disease, a subset of frontotemporal dementias, and other tauopathies. We CRISPR-Cas9 edited two human cell lines to generate broadly adaptable models for neurodegeneration research. We applied the system to inducibly express balanced levels of 3-repeat and 4-repeat wild-type or P301L mutant Tau. Following 12-h induction, quantitative mass spectrometry revealed the Parkinson's disease-causing protein DJ-1 and non-muscle myosins as Tau interactors whose binding to Tau was profoundly influenced by the presence or absence of the P301L mutation. The presence of wild-type Tau stabilized non-muscle myosins at higher steady-state levels. Strikingly, in human differentiated co-cultures of neuronal and glial cells, the preferential interaction of non-muscle myosins to wild-type Tau depended on myosin ATPase activity. Consistently, transgenic P301L Tau mice exhibited reduced phosphorylation of regulatory myosin light chains known to activate this ATPase. The direct link of Tau to non-muscle myosins corroborates independently proposed roles of Tau in maintaining dendritic spines and mitochondrial fission biology, two subcellular niches affected early in tauopathies.


Assuntos
Adenosina Trifosfatases/metabolismo , Sistemas CRISPR-Cas/genética , Engenharia Celular , Mutação , Neurônios/metabolismo , Mapeamento de Interação de Proteínas , Proteínas tau/metabolismo , Astrócitos/citologia , Técnicas de Cocultura , Humanos , Miosinas/metabolismo , Neurônios/citologia , Ligação Proteica , Proteínas tau/genética
10.
PLoS One ; 14(5): e0217392, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136617

RESUMO

Somatostatin (SST) is a cyclic peptide that is understood to inhibit the release of hormones and neurotransmitters from a variety of cells by binding to one of five canonical G protein-coupled SST receptors (SSTR1 to SSTR5). Recently, SST was also observed to interact with the amyloid beta (Aß) peptide and affect its aggregation kinetics, raising the possibility that it may bind other brain proteins. Here we report on an SST interactome analysis that made use of human brain extracts as biological source material and incorporated advanced mass spectrometry workflows for the relative quantitation of SST binding proteins. The analysis revealed SST to predominantly bind several members of the P-type family of ATPases. Subsequent validation experiments confirmed an interaction between SST and the sodium-potassium pump (Na+/K+-ATPase) and identified a tryptophan residue within SST as critical for binding. Functional analyses in three different cell lines indicated that SST might negatively modulate the K+ uptake rate of the Na+/K+-ATPase.


Assuntos
Encéfalo/metabolismo , ATPases do Tipo-P/metabolismo , Somatostatina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Cinética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Radioisótopos de Rubídio/farmacocinética , ATPase Trocadora de Sódio-Potássio/metabolismo , Somatostatina-28/metabolismo
11.
FASEB J ; 33(3): 3841-3850, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521377

RESUMO

Equilibrative nucleoside transporters (ENTs) translocate nucleosides and nucleobases across plasma membranes, as well as a variety of anti-cancer, -viral, and -parasite nucleoside analogs. They are also key members of the purinome complex and regulate the protective and anti-inflammatory effects of adenosine. Despite their important role, little is known about the mechanisms involved in their regulation. We conducted membrane yeast 2-hybrid and coimmunoprecipitation studies and identified, for the first time to our knowledge, the existence of protein-protein interactions between human ENT1 and ENT2 (hENT1 and hENT2) proteins in human cells and the formation of hetero- and homo-oligomers at the plasma membrane and the submembrane region. The use of NanoLuc Binary Technology allowed us to analyze changes in the oligomeric status of hENT1 and hENT2 and how they rapidly modify the uptake profile for nucleosides and nucleobases and allow cells to respond promptly to external signals or changes in the extracellular environment. These changes in hENTs oligomerization are triggered by PKC activation and subsequent action of protein phosphatase 1.-Grañe-Boladeras, N., Williams, D., Tarmakova, Z., Stevanovic, K., Villani, L. A., Mehrabi, P., Siu, K. W. M., Pastor-Anglada, M., Coe, I. R. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Multimerização Proteica , Células HEK293 , Humanos , Ligação Proteica , Proteína Quinase C/metabolismo , Proteína Fosfatase 1/metabolismo
12.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361391

RESUMO

Canonical Wnt/ß-catenin signaling is an essential regulator of various cellular functions throughout development and adulthood. Aberrant Wnt/ß-catenin signaling also contributes to various pathologies including cancer, necessitating an understanding of cell context-dependent mechanisms regulating this pathway. Since protein-protein interactions underpin ß-catenin function and localization, we sought to identify novel ß-catenin interacting partners by affinity purification coupled with tandem mass spectrometry in vascular smooth muscle cells (VSMCs), where ß-catenin is involved in both physiological and pathological control of cell proliferation. Here, we report novel components of the VSMC ß-catenin interactome. Bioinformatic analysis of the protein networks implies potentially novel functions for ß-catenin, particularly in mRNA translation, and we confirm a direct interaction between ß-catenin and the fragile X mental retardation protein (FMRP). Biochemical studies reveal a basal recruitment of ß-catenin to the messenger ribonucleoprotein and translational pre-initiation complex, fulfilling a translational repressor function. Wnt stimulation antagonizes this function, in part, by sequestering ß-catenin away from the pre-initiation complex. In conclusion, we present evidence that ß-catenin fulfills a previously unrecognized function in translational repression.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Iniciação Traducional da Cadeia Peptídica , beta Catenina/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cicloeximida/farmacologia , Ontologia Genética , Células HEK293 , Humanos , Camundongos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Via de Sinalização Wnt/efeitos dos fármacos
13.
Sci Rep ; 8(1): 8654, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872131

RESUMO

At times, it can be difficult to discern if a lack of overlap in reported interactions for a protein-of-interest reflects differences in methodology or biology. In such instances, systematic analyses of protein-protein networks across diverse paradigms can provide valuable insights. Here, we interrogated the interactome of the prion protein (PrP), best known for its central role in prion diseases, in four mouse cell lines. Analyses made use of identical affinity capture and sample processing workflows. Negative controls were generated from PrP knockout lines of the respective cell models, and the relative levels of peptides were quantified using isobaric labels. The study uncovered 26 proteins that reside in proximity to PrP. All of these proteins are predicted to have access to the outer face of the plasma membrane, and approximately half of them were not reported to interact with PrP before. Strikingly, although several proteins exhibited profound co-enrichment with PrP in a given model, except for the neural cell adhesion molecule 1, no protein was highly enriched in all PrP-specific interactomes. However, Gene Ontology analyses revealed a shared association of the majority of PrP candidate interactors with cellular events at the intersection of transforming growth factor ß and integrin signaling.


Assuntos
Integrinas/metabolismo , Proteínas Priônicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Camundongos , Proteínas Priônicas/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
14.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677515

RESUMO

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Assuntos
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cátions , Metilação de DNA , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/química , Xenopus laevis
15.
PLoS One ; 12(8): e0182844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832675

RESUMO

Alzheimer disease (AD) stands out amongst highly prevalent diseases because there is no effective treatment nor can the disease be reliably diagnosed at an early stage. A hallmark of AD is the accumulation of aggregation-prone amyloid ß peptides (Aß), the main constituent of amyloid plaques. To identify Aß-dependent changes to the global proteome we used the recently introduced APPNL-F mouse model of AD, which faithfully recapitulates the Aß pathology of the disease, and a workflow that interrogated the brain proteome of these mice by quantitative mass spectrometry at three different ages. The elevated Aß burden in these mice was observed to cause almost no changes to steady-state protein levels of the most abundant >2,500 brain proteins, including 12 proteins encoded by well-confirmed AD risk loci. The notable exception was a striking reduction in immunoglobulin heavy mu chain (IGHM) protein levels in homozygote APPNL-F/NL-F mice, relative to APPNL-F/wt littermates. Follow-up experiments revealed that IGHM levels generally increase with age in this model. Although discovered with brain samples, the relative IGHM depletion in APPNL-F/NL-F mice was validated to manifest systemically in the blood, and did not extend to other blood proteins, including immunoglobulin G. Results presented are consistent with a cause-effect relationship between the excessive accumulation of Aß and the selective depletion of IGHM levels, which may be of relevance for understanding the etiology of the disease and ongoing efforts to devise blood-based AD diagnostics.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Imunoglobulina M/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Camundongos
16.
Elife ; 62017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650319

RESUMO

The amyloid ß peptide (Aß) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aß1-42 (oAß1-42) and/or monomeric Aß1-42 (mAß1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAß1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aß1-42. The presence of SST14 inhibited Aß aggregation and masked the ability of several antibodies to detect Aß. Notably, Aß1-42, but not Aß1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aß-directed diagnostics and may signify a role of SST14 in the etiology of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hormônios/metabolismo , Multimerização Proteica , Somatostatina/metabolismo , Peptídeos beta-Amiloides/química , Encéfalo/patologia , Humanos , Espectrometria de Massas , Peso Molecular , Ligação Proteica
17.
Sci Rep ; 7: 40313, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098160

RESUMO

The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1.


Assuntos
Antígeno CD56/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Transição Epitelial-Mesenquimal , Adesões Focais/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/química , Citoesqueleto/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Histidina/metabolismo , Humanos , Integrinas/metabolismo , Camundongos , Modelos Biológicos , Ácido N-Acetilneuramínico/metabolismo , Fosforilação , Proteínas Priônicas/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
18.
PLoS One ; 11(6): e0156779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327609

RESUMO

A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Proteínas Priônicas/deficiência , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Antígeno CD56/metabolismo , Proteínas de Ligação a Calmodulina , Linhagem Celular , Análise por Conglomerados , Ontologia Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos , Substrato Quinase C Rico em Alanina Miristoilada , Ácido N-Acetilneuramínico/metabolismo , Proteínas Priônicas/metabolismo , Proteômica , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Transdução de Sinais
19.
Phys Chem Chem Phys ; 18(27): 18119-27, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27327880

RESUMO

Macrocyclization is commonly observed in large bn(+) (n≥ 4) ions and as a consequence can lead to incorrect protein identification due to sequence scrambling. In this work, the analogous [b5- H]˙(+) radical cations derived from aliphatic hexapeptides (GA5˙(+)) also showed evidence of macrocyclization under CID conditions. However, the major fragmentation for [b5- H]˙(+) ions is the loss of CO2 and not CO loss, which is commonly observed in closed-shell bn(+) ions. Isotopic labeling using CD3 and (18)O revealed that more than one common structure underwent dissociations. Theoretical studies found that the loss of CO2 is radical-driven and is facilitated by the radical being located at the Cα atom immediately adjacent to the oxazolone ring. Comparable energy barriers against macrocyclization, hydrogen-atom transfer, and fragmentations are found by DFT calculations and the results are consistent with the experimental observations that a variety of dissociation products are observed in the CID spectra.

20.
Oncotarget ; 7(15): 20669-79, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26942696

RESUMO

The Signal Transducer and Activator of Transcription 3 (STAT3) oncogene is a master regulator of many human cancers, and a well-recognized target for therapeutic intervention. A well known STAT3 inhibitor, S3I-201 (NSC 74859), is hypothesized to block STAT3 function in cancer cells by binding the STAT3 SH2 domain and disrupt STAT3 protein complexation events. In this study, liquid chromatography tandem mass spectrometry analysis revealed that STAT3, in the presence of S3I-201, showed a minimum of five specific sites of modification, cysteine's 108, 259, 367, 542, and 687. Moreover, a prepared fluorescently labeled chemical probe of S3I-201 (DB-6-055) revealed that S3I-201 non-specifically and globally alkylated intracellular proteins at concentrations consistent with S3I-201's reported IC50. These data are consistent with the hypothesis that S3I-201 is a sub-optimal probe for interrogating STAT3-related cell biology.


Assuntos
Alquilantes/farmacologia , Benzenossulfonatos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Ácidos Aminossalicílicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA