Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 118(34): 10266-84, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25133518

RESUMO

A crystalline phase of the pharmaceutical compound ronacaleret hydrochloride is studied by solid-state nuclear magnetic resonance (SSNMR) spectroscopy and single-crystal X-ray diffraction. The crystal structure is determined to contain two independent cationic molecules and chloride anions in the asymmetric unit, which combine with the covalent structure of the molecule to yield complex SSNMR spectra. Experimental approaches based on dipolar correlation, chemical shift tensor analysis, and quadrupolar interaction analysis are employed to obtain detailed information about this phase. Density functional theory (DFT) calculations are used to predict chemical shielding and electric field gradient (EFG) parameters for comparison with experiment. (1)H SSNMR experiments performed at 16.4 T using magic-angle spinning (MAS) and homonuclear dipolar decoupling provide information about hydrogen bonding and molecular connectivity that can be related to the crystal structure. (19)F and (13)C assignments for the Z' = 2 structure are obtained using DFT calculations, (19)F homonuclear dipolar correlation, and (13)C-(19)F heteronuclear dipolar correlation experiments. (35)Cl MAS experiments at 16.4 T observe two chlorine sites that are assigned using calculated chemical shielding and EFG parameters. SSNMR dipolar correlation experiments are used to extract (1)H-(13)C, (1)H-(15)N, (1)H-(19)F, (13)C-(19)F, and (1)H-(35)Cl through-space connectivity information for many positions of interest. The results allow for the evaluation of the performance of a suite of SSNMR experiments and computational approaches as applied to a complex but typical pharmaceutical solid phase.


Assuntos
Cloretos/química , Indanos/química , Espectroscopia de Ressonância Magnética/métodos , Fenilpropionatos/química , Teoria Quântica , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Químicos , Difração de Raios X
2.
J Pharm Sci ; 102(10): 3705-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918278

RESUMO

A novel crystalline form of the boron-containing antibacterial drug (S)-3-(aminomethyl)-7-(3-hydroxypropoxy)benzo[c] [1,2]oxaborol-1(3H)-ol hydrochloride is studied by solid-state nuclear magnetic resonance (SSNMR) and single-crystal X-ray diffraction techniques. After determination of the crystal structure by X-ray diffraction, SSNMR spectroscopy of this form is performed to obtain structural information using experimental approaches based on dipolar correlation, chemical shift analysis, and quadrupolar interaction analysis. 1H SSNMR experiments at 16.4 T using magic-angle spinning (MAS) and homonuclear dipolar decoupling, 2D SSNMR experiments based on (1)H­(13)C and (1)H­(11)B dipolar heteronuclear correlation, and density functional theory (DFT) calculations are combined in a novel approach to obtain a nearly complete assignment of the (1)H spectrum of this crystalline phase. (11)B and (35)Cl chemical shift and quadrupolar parameters are obtained using the analysis of MAS spectra and are found to be accurately reproduced using DFT calculations. NMR chemical shielding and electric field gradient parameters obtained using these methods are related to hydrogen-bonding trends in the crystal structure. The results illustrate the increasing capability of SSNMR techniques involving (1)H, (11)B, and (35)Cl SSNMR in the analysis of the crystal structure of a pharmaceutical compound containing covalently bonded boron.


Assuntos
Antibacterianos/química , Boro/química , Sais/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Difração de Raios X/métodos
3.
Pharm Res ; 29(7): 1866-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22367510

RESUMO

PURPOSE: Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. METHODS: A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and 77Se isotopes and ¹H spin diffusion. RESULTS: PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. CONCLUSIONS: The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.


Assuntos
Pirrolidinas/química , Compostos de Vinila/química , Varredura Diferencial de Calorimetria , Cristalização , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Difração de Raios X
4.
J Pharm Sci ; 96(5): 1270-81, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17455300

RESUMO

Near-infrared spectroscopy was used to monitor the phase conversion for two solvatomorphs of caffeine, an anhydrous form and a nonstoichiometric hydrate, as a function of time, temperature, and relative humidity. The transformation kinetics between these caffeine forms was determined to increase with temperature. The rate of conversion was also determined to be dependent on the difference between the observed relative humidity and the equilibrium water activity of the anhydrate/hydrate system, that is, phase boundary. Near the phase boundary, minimal conversion between the anhydrous and hydrated forms of caffeine was detected. Using this kinetic data, the phase boundary for these forms was determined to be approximately 67% RH at 10 degrees C, 74.5% RH at 25 degrees C, and 86% RH at 40 degrees C. At each specified temperature, anhydrous caffeine is the thermodynamically stable form below this relative humidity and the hydrate is stable above. The phase boundary data were then fitted using a second order polynomial to determine the stability relationship between anhydrous caffeine and its hydrate at additional temperatures. This approach can be used to rapidly determine the stability relationship for solvatomorphs as well as the relative kinetics of their interconversion. Both of these factors are critical in selecting the development form, designing appropriate stability studies, and developing robust conditions for the preparation and packaging of the API and formulated drug product.


Assuntos
Cafeína/química , Transição de Fase , Espectroscopia de Luz Próxima ao Infravermelho , Tecnologia Farmacêutica/métodos , Água/química , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Umidade , Cinética , Modelos Químicos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA