RESUMO
Immunosenescence is a well-characterized phenomenon that occurs with increasing age in all immune and somatic cells. In order to best study immunosenescence, it is imperative to develop methods to accurately identify immunosenescent cells. Elderly patients are known to have impaired immune responses to respiratory viruses, and it is hypothesized that this is due, in part, to immunosenescent, terminally exhausted CD8+ T cells. To test this hypothesis, we developed an aged mouse model and a flow cytometry protocol using the Cytek® Aurora to assess the CD8+ T-cell response during respiratory viral infection and identify immunosenescent CD8+ T cells. This protocol and our aged mouse model have great potential to be incredibly valuable for future studies elucidating how to rejuvenate and possibly reverse immunosenescent CD8+ T cells, which could improve the immune response to respiratory viruses in this at-risk population.
Assuntos
Linfócitos T CD8-Positivos , Citometria de Fluxo , Imunossenescência , Infecções Respiratórias , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Citometria de Fluxo/métodos , Imunossenescência/imunologia , Modelos Animais de Doenças , Viroses/imunologia , HumanosRESUMO
BACKGROUND: Previous investigations into clinical signs and symptoms associated with influenza types and subtypes have not definitively established differences in the clinical presentation or severity of influenza disease. METHODS: The study population included children 0 through 17 years old enrolled at 8 New Vaccine Surveillance Network sites between 2015 and 2020 who tested positive for influenza virus by molecular testing. Demographic and clinical data were collected for study participants via parent/guardian interview and medical chart review. Descriptive statistics were used to summarize demographic and clinical characteristics by influenza subtype. Multivariable logistic regression and Cox proportional hazard models were used to assess effects of age, sex, influenza subtype, and history of asthma on severity, including hospital admission, need for supplemental oxygen, and length of stay. RESULTS: Retractions, cyanosis, and need for supplemental oxygen were more frequently observed among patients with influenza A(H1N1)pdm09. Headaches and sore throat were more commonly reported among patients with influenza B. Children with influenza A(H1N1)pdm09 and children with asthma had significantly increased odds of hospital admission (adjusted odds ratio (AOR): 1.39, 95% CI: 1.14-1.69 and AOR: 2.14, 95% CI: 1.72-2.67, respectively). During admission, children with influenza A(H1N1)pdm09 had significantly increased use of supplemental oxygen compared to children with A(H3N2) (AOR: 0.60, 95% CI: 0.44-0.82) or B (AOR: 0.56, 95% CI: 0.41-0.76). CONCLUSIONS: Among children presenting to the emergency department and admitted to the hospital, influenza A(H1N1)pdm09 caused more severe disease compared to influenza A(H3N2) and influenza B. Asthma also contributed to severe influenza disease regardless of subtype.
RESUMO
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions (K. M. Edwards et al., N Engl J Med 368:633-643, 2013, https://doi.org/10.1056/NEJMoa1204630; A. R. Falsey et al., J Infect Dis 187:785-790, 2003, https://doi.org/10.1086/367901; J. S. Kahn, Clin Microbiol Rev 19:546-557, 2006, https://doi.org/10.1128/CMR.00014-06; N. Shafagati and J. Williams, F1000Res 7:135, 2018, https://doi.org/10.12688/f1000research.12625.1). HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro in part by preventing STAT1 phosphorylation (A. K. Hastings et al., Virology (Auckl) 494:248-256, 2016, https://doi.org/10.1016/j.virol.2016.04.022). HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for the inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wild-type, but not ΔSH virus, blocked IL-6-mediated STAT3 activation. Furthermore, JAK1 protein (but not RNA) was significantly reduced in cells infected with wild-type, but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by the addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.IMPORTANCEHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic (SH) protein that is known to block IFN signaling, but the mechanism by which it functions and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and that SH depletes JAKs, which are critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and related viruses interfere with immune signals important for disease could pave the way for future treatments aimed at mitigating severe infections.
RESUMO
Enterovirus D68 (EV-D68) is associated with acute flaccid myelitis (AFM), a poliomyelitis-like illness causing paralysis in young children. However, mechanisms of paralysis are unclear, and antiviral therapies are lacking. To better understand EV-D68 disease, we inoculated newborn mice intracranially to assess viral tropism, virulence, and immune responses. Wild-type (WT) mice inoculated intracranially with a neurovirulent strain of EV-D68 showed infection of spinal cord neurons and developed paralysis. Spinal tissue from infected mice revealed increased levels of chemokines, inflammatory monocytes, macrophages, and T cells relative to controls, suggesting that immune cell infiltration influences pathogenesis. To define the contribution of cytokine-mediated immune cell recruitment to disease, we inoculated mice lacking CCR2, a receptor for several EV-D68-upregulated cytokines, or RAG1, which is required for lymphocyte maturation. WT, Ccr2 -/- , and Rag1 -/- mice had comparable viral titers in spinal tissue. However, Ccr2 -/- and Rag1 -/- mice had significantly less paralysis relative to WT mice. Consistent with impaired T cell recruitment to sites of infection in Ccr2 -/- and Rag1 -/- mice, antibody-mediated depletion of CD4 + or CD8 + T cells from WT mice diminished paralysis. These results indicate that immune cell recruitment to the spinal cord promotes EV-D68-associated paralysis and illuminate new targets for therapeutic intervention.
RESUMO
BACKGROUND: The COVID-19 pandemic raised unprecedented challenges to vaccinating children. This multi-center study aimed to compare on-time vaccination of children before and during the COVID-19 pandemic and identify key factors associated with on-time vaccination. METHODS: This study was conducted among children aged 0-6 years enrolled in the New Vaccine Surveillance Network at seven geographically diverse U.S. academic medical centers. Children with acute respiratory illness or acute gastroenteritis were enrolled from emergency department and inpatient settings; healthy control subjects were enrolled from primary care practices. Vaccination data were collected and verified from patient medical records, immunization information systems, and/or provider documentation. On-time vaccination according to Advisory Committee on Immunization Practices recommendations was compared between pre-pandemic (December 2018-February 2020) and pandemic (March 2020-August 2021) periods using bivariate and multivariable analyses, adjusting for key demographic, clinical, and study characteristics. RESULTS: A total of 24,713 children were included in the analytic sample (non-Hispanic 73.4 %; White 51.0 %; publicly insured 69.0 %). On-time vaccination declined between the pre-pandemic (67.3 %) and pandemic (65.4 %) periods (Adjusted Odds Ratio 0.89, 95 % CI 0.84-0.95). The largest declines were observed among children who were < 12 months, male, Black, publicly insured, or whose mothers had a high school-equivalent education or less. The pandemic impact also varied by vaccine type and study site. CONCLUSIONS: This multi-center study revealed a relatively modest overall reduction in on-time vaccination, which may reflect multilevel efforts to address pandemic-associated challenges. However, some patient subgroups and sites experienced greater reductions in on-time vaccination, highlighting the importance of tailoring interventions to increase equitable vaccine delivery, access, and acceptance across populations and communities.
RESUMO
A key mediator of T cell impairment during respiratory virus infection is the inhibitory receptor PD-1. PD-1 is induced on T cells following antigen exposure, whereas proinflammatory cytokines upregulate the ligands PD-L1 and PD-L2. Respiratory virus infection leads to upregulation of PD-L1 on airway epithelial cells, dendritic cells, and alveolar macrophages. However, the role of PD-L1 on different cell types in acute respiratory virus infections is not known. We sought to determine the role of PD-L1 on different cell types in CD8+ T cell impairment. We found that PD-L1-/- mice challenged with human metapneumovirus or influenza showed a similar level of CD8+ T cell impairment compared to wild-type (WT) mice. Moreover, virus clearance was delayed in PD-L1-/- mice compared to WT. CD8+ T cells from PD-L1-deficient mice expressed higher levels of inhibitory receptors both at baseline and after respiratory virus infection. The antibody blockade of PD-L2 failed to restore function to the impaired cells. While reciprocal bone marrow chimeras between WT and PD-L1-/- mice did not restore CD8+ T cell function after the respiratory virus challenge, mice that received the PD-L1-/- bone marrow had higher inhibitory receptor expression on CD8+ cells. This discrepancy in the inhibitory receptor expression suggests that cells of the hematopoietic compartment contribute to T cell impairment on CD8+ T cells.IMPORTANCEThe phenomenon of pulmonary CD8+ T cell impairment with diminished antiviral function occurs during acute respiratory virus infection mediated by Programmed Cell Death-1 (PD-1) signaling. Moreover, PD-1 blockade enhances T cell function to hasten viral clearance. The ligand PD-L1 is expressed in many cell types, but which cells drive lung T cell impairment is not known. We used genetic approaches to determine the contribution of PD-L1 on lung T cell impairment. We found that PD-L2 cannot compensate for the loss of PD-L1, and PD-L1-deficient mice exhibit increased expression of other inhibitory receptors. Bone marrow chimeras between PD-L1-deficient and wild-type mice indicated that hematopoietic PD-L1 expression is associated with inhibitory receptor upregulation and impairment.
Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Proteína 2 Ligante de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Metapneumovirus/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologiaRESUMO
BACKGROUND: The burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic children was initially presumed to be high, which influenced hospital, school and childcare policies. Before vaccines were widely available, some hospitals implemented universal preprocedural SARS-CoV-2 polymerase chain reaction testing on asymptomatic patients. Understanding SARS-CoV-2 prevalence in asymptomatic children is needed to illuminate the diversity of viral characteristics and inform policies implemented during future pandemics. METHODS: Data were extracted from patient records of outpatient children who were preprocedurally tested for SARS-CoV-2 from 5 US hospital systems between March 1, 2020, and February 28, 2021. Prevalence was determined from positive test results. Adjusted odds ratios (AORs) were calculated using mixed logistic regression with the site as a random effect. RESULTS: This study analyzed 93,760 preprocedural SARS-CoV-2 test results from 74,382 patients and found 2693 infections (3.6%) from 2889 positive tests (3.1%). Site-specific prevalence varied across sites. Factors modestly associated with infection included being uninsured [AOR, 1.76 (95% confidence interval [CI], 1.45-2.13)], publicly insured [AOR, 1.17 (95% CI, 1.05-1.30)], Hispanic [AOR, 1.78 (95% CI, 1.59-1.99)], Black [AOR, 1.22 (95% CI, 1.06-1.39)], elementary school age [5-11 years; AOR, 1.15 (95% CI, 1.03-1.28)], or adolescent [12-17 years; AOR, 1.26 (95% CI, 1.13-1.41)]. CONCLUSIONS: SARS-CoV-2 prevalence was low in outpatient children undergoing preprocedural testing, a population that was predominantly asymptomatic at the time of testing. This study contributes evidence that suggests that undetected infection in children likely did not play a predominant role in SARS-CoV-2 transmission during the early prevaccine pandemic period when the general population was naive to the virus.
RESUMO
BACKGROUND: Rotavirus was the leading cause of acute gastroenteritis among US children until vaccine introduction in 2006, after which, substantial declines in severe rotavirus disease occurred. We evaluated rotavirus vaccine effectiveness (VE) over 13 years (2009-2022). METHODS: We analyzed data from the New Vaccine Surveillance Network using a test-negative case-control design to estimate rotavirus VE against laboratory-confirmed rotavirus infections among children seeking care for acute gastroenteritis (≥3 diarrhea or ≥1 vomiting episodes within 24 hours) in the emergency department (ED) or hospital. Case-patients and control-patients were children whose stool specimens tested rotavirus positive or negative, respectively, by enzyme immunoassay or polymerase chain reaction assays. VE was calculated as (1-adjusted odds ratio)×100%. Adjusted odds ratios were calculated by multivariable unconditional logistic regression. RESULTS: Among 16 188 enrolled children age 8 to 59 months, 1720 (11%) tested positive for rotavirus. Case-patients were less often vaccinated against rotavirus than control-patients (62% versus 88%). VE for receiving ≥1 dose against rotavirus-associated ED visits or hospitalization was 78% (95% confidence interval [CI] 75%-80%). Stratifying by a modified Vesikari Severity Score, VE was 59% (95% CI 49%-67%), 80% (95% CI 77%-83%), and 94% (95% CI 90%-97%) against mild, moderately severe, and very severe disease, respectively. Rotavirus vaccines conferred protection against common circulating genotypes (G1P[8], G2P[4], G3P[8], G9P[8], and G12[P8]). VE was higher in children <3 years (73% to 88%); protection decreased as age increased. CONCLUSIONS: Rotavirus vaccines remain highly effective in preventing ED visits and hospitalizations in US children.
Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Eficácia de Vacinas , Humanos , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/uso terapêutico , Vacinas contra Rotavirus/administração & dosagem , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Gastroenterite/epidemiologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/epidemiologia , Lactente , Pré-Escolar , Masculino , Feminino , Estudos de Casos e Controles , Doença Aguda , Estados Unidos/epidemiologia , Índice de Gravidade de Doença , Rotavirus/imunologia , Hospitalização/estatística & dados numéricosRESUMO
Influenza C virus (ICV) is an orthomyxovirus related to influenza A and B, yet due to few commercial assays, epidemiologic studies may underestimate incidence of ICV infection and disease. We describe the epidemiology and characteristics of ICV within the New Vaccine Surveillance Network (NVSN), a Centers for Disease Control and Prevention (CDC)-led network that conducts population-based surveillance for pediatric acute respiratory illness (ARI). Nasal or/combined throat swabs were collected from emergency department (ED) or inpatient ARI cases, or healthy controls, between 12/05/2016-10/31/2019 and tested by molecular assays for ICV and other respiratory viruses. Parent surveys and chart review were used to analyze demographic and clinical characteristics of ICV+ children. Among 19,321 children tested for ICV, 115/17,668 (0.7 %) ARI cases and 8/1653 (0.5 %) healthy controls tested ICV+. Median age of ICV+ patients was 18 months and 88 (71.5 %) were ≤36 months. Among ICV+ ARI patients, 40 % (46/115) were enrolled in the ED, 60 % (69/115) were inpatients, with 15 admitted to intensive care. Most ICV+ ARI patients had fever (67.8 %), cough (94.8 %), or wheezing (60.9 %). Most (60.9 %) ARI cases had ≥1 co-detected viruses including rhinovirus, RSV, and adenovirus. In summary, ICV detection was rarely associated with ARI in children, and most ICV+ patients were ≤3 years old with co-detected respiratory viruses.
Assuntos
Gammainfluenzavirus , Influenza Humana , Infecções Respiratórias , Humanos , Pré-Escolar , Masculino , Lactente , Feminino , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Estados Unidos/epidemiologia , Criança , Gammainfluenzavirus/isolamento & purificação , Gammainfluenzavirus/genética , Adolescente , Coinfecção/virologia , Coinfecção/epidemiologia , Doença Aguda/epidemiologiaRESUMO
Small hydrophobic (SH) proteins are a class of viral accessory proteins expressed by many members of the negative-stranded RNA viral families Paramyxoviridae and Pneumoviridae. Identified SH proteins are type I or II transmembrane (TM) proteins with a single-pass TM domain. Little is known about the functions of SH proteins; however, several possess viroporin activity, enhancing membrane permeability of infected cells or those expressing SH protein. Moreover, several SH proteins inhibit apoptosis and immune signaling pathways within infected cells, including TNF and interferon signaling, or activate inflammasomes. SH proteins are generally nonessential for viral replication in vitro, but loss of SH is often associated with reduced replication in vivo, suggesting a role in enhancing viral replication or evading host immunity. Analogous proteins are expressed by a variety of pathogens of public health importance; thus, understanding the functional importance and mechanisms of SH proteins provides insight into the pathogenesis and replication of negative-sense RNA viruses.
Assuntos
Paramyxoviridae , Proteínas Virais , Replicação Viral , Humanos , Paramyxoviridae/metabolismo , Paramyxoviridae/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , Apoptose , Pneumovirus/metabolismo , Pneumovirus/fisiologia , Transdução de Sinais , Proteínas Oncogênicas de RetroviridaeRESUMO
BACKGROUND: The Centers for Disease Control and Prevention (CDC) recommends oseltamivir phosphate for children <2 years old with confirmed or suspected influenza as they are at high risk for complications. We analyzed infant characteristics associated with nonprescription of oseltamivir over 9 years. METHODS: We conducted a retrospective electronic health record (EHR) review of infants <12 months old born between January 1, 2012 and December 31, 2019 within the University of Pittsburgh Medical Center health system in Southwestern Pennsylvania who had >2 well-child visits during their first year. Infants with a confirmed positive test for influenza were included in the analysis. Factors associated with infant oseltamivir nonprescription were assessed using multivariable logistic regression. RESULTS: Of 457 infants with confirmed influenza, 86% were prescribed oseltamivir. The proportion of infants prescribed oseltamivir increased from an average of 64.6% during the 2012-2016 influenza seasons to 90.4% during the 2016-2020 influenza seasons. Infants were more likely to not be prescribed oseltamivir if they experienced >2 days of influenza symptoms (odds ratio (OR): 9.4, 95% CI: 4.8, 18.7, P < .001), were diagnosed during the 2012-2016 influenza seasons (OR: 4.2, 95% CI: 1.8, 9.5, P < .001), tested positive for influenza via a multiplex/reverse transcriptase polymerase chain reaction test (OR: 6.7, 95% CI: 2.7, 16.3, P < .001; OR: 2.7, 95% CI: 1.1, 7.1; P = .04), or did not have a fever at point-of-care (OR: 2.3, 95% CI: 1.2, 4.6, P = .01). CONCLUSION: Adherence to CDC influenza antiviral treatment guidelines for infants is high and improved over time. However, the provision of targeted education to providers may further improve oseltamivir prescribing practices for high-risk children <12 months of age.
Assuntos
Antivirais , Influenza Humana , Medicamentos sem Prescrição , Oseltamivir , Humanos , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Antivirais/uso terapêutico , Lactente , Estudos Retrospectivos , Masculino , Feminino , Medicamentos sem Prescrição/uso terapêutico , Estações do Ano , Recém-Nascido , PennsylvaniaRESUMO
BACKGROUND: The coronavirus disease 2019 pandemic disrupted respiratory syncytial virus (RSV) seasonality resulting in early, atypical RSV seasons in 2021 and 2022, with an intense 2022 peak overwhelming many pediatric healthcare facilities. METHODS: We conducted prospective surveillance for acute respiratory illness during 2016-2022 at 7 pediatric hospitals. We interviewed parents, reviewed medical records, and tested respiratory specimens for RSV and other respiratory viruses. We estimated annual RSV-associated hospitalization rates in children aged <5 years and compared hospitalization rates and characteristics of RSV-positive hospitalized children over 4 prepandemic seasons (2016-2020) to those hospitalized in 2021 or 2022. RESULTS: There was no difference in median age or age distribution between prepandemic and 2021 seasons. Median age of children hospitalized with RSV was higher in 2022 (9.6 months vs 6.0 months, P < .001). RSV-associated hospitalization rates were higher in 2021 and 2022 than the prepandemic average across age groups. Comparing 2021 to 2022, RSV-associated hospitalization rates were similar among children <2 years of age; however, children aged 24 to 59 months had significantly higher rates of RSV-associated hospitalization in 2022 (rate ratio 1.68 [95% confidence interval 1.37-2.00]). More RSV-positive hospitalized children received supplemental oxygen and there were more respiratory virus codetections in 2022 than in prepandemic seasons (P < .001 and P = .003, respectively), but there was no difference in the proportion hypoxemic, mechanically ventilated, or admitted to intensive care. CONCLUSIONS: The atypical 2021 and 2022 RSV seasons resulted in higher hospitalization rates with similar disease severity to prepandemic seasons.
Assuntos
Hospitalização , Infecções por Vírus Respiratório Sincicial , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Hospitalização/estatística & dados numéricos , Hospitalização/tendências , Lactente , Pré-Escolar , Masculino , Estudos Prospectivos , Feminino , COVID-19/epidemiologia , Estações do Ano , Hospitais Pediátricos/estatística & dados numéricos , Recém-NascidoRESUMO
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions 1,2,3,4. HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro, in part by preventing STAT1 phosphorylation5. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.
RESUMO
Respiratory viral infections remain a leading cause of morbidity and mortality. Using a murine model of human metapneumovirus, we identified recruitment of a C1q-expressing inflammatory monocyte population concomitant with viral clearance by adaptive immune cells. Genetic ablation of C1q led to reduced CD8+ T-cell function. Production of C1q by a myeloid lineage was necessary to enhance CD8+ T-cell function. Activated and dividing CD8+ T cells expressed a C1q receptor, gC1qR. Perturbation of gC1qR signaling led to altered CD8+ T-cell IFN-γ production, metabolic capacity, and cell proliferation. Autopsy specimens from fatal respiratory viral infections in children exhibited diffuse production of C1q by an interstitial population. Humans with severe coronavirus disease (COVID-19) infection also exhibited upregulation of gC1qR on activated and rapidly dividing CD8+ T cells. Collectively, these studies implicate C1q production from monocytes as a critical regulator of CD8+ T-cell function following respiratory viral infection.
Assuntos
Linfócitos T CD8-Positivos , Monócitos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Monócitos/imunologia , Monócitos/metabolismo , Humanos , Camundongos , Metapneumovirus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , COVID-19/metabolismo , Complemento C1q/metabolismo , Complemento C1q/genética , SARS-CoV-2/imunologia , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/metabolismo , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismoRESUMO
Importance: Studies of influenza in children commonly rely on coded diagnoses, yet the ability of International Classification of Diseases, Ninth Revision codes to identify influenza in the emergency department (ED) and hospital is highly variable. The accuracy of newer International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes to identify influenza in children is unknown. Objective: To determine the accuracy of ICD-10 influenza discharge diagnosis codes in the pediatric ED and inpatient settings. Design, Setting, and Participants: Children younger than 18 years presenting to the ED or inpatient settings with fever and/or respiratory symptoms at 7 US pediatric medical centers affiliated with the Centers for Disease Control and Prevention-sponsored New Vaccine Surveillance Network from December 1, 2016, to March 31, 2020, were included in this cohort study. Nasal and/or throat swabs were collected for research molecular testing for influenza, regardless of clinical testing. Data, including ICD-10 discharge diagnoses and clinical testing for influenza, were obtained through medical record review. Data analysis was performed in August 2023. Main Outcomes and Measures: The accuracy of ICD-10-coded discharge diagnoses was characterized using molecular clinical or research laboratory test results as reference. Measures included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Estimates were stratified by setting (ED vs inpatient) and age (0-1, 2-4, and 5-17 years). Results: A total of 16â¯867 children in the ED (median [IQR] age, 2.0 [0.0-4.0] years; 9304 boys [55.2%]) and 17â¯060 inpatients (median [IQR] age, 1.0 [0.0-4.0] years; 9798 boys [57.4%]) were included. In the ED, ICD-10 influenza diagnoses were highly specific (98.0%; 95% CI, 97.8%-98.3%), with high PPV (88.6%; 95% CI, 88.0%-89.2%) and high NPV (85.9%; 95% CI, 85.3%-86.6%), but sensitivity was lower (48.6%; 95% CI, 47.6%-49.5%). Among inpatients, specificity was 98.2% (95% CI, 98.0%-98.5%), PPV was 82.8% (95% CI, 82.1%-83.5%), sensitivity was 70.7% (95% CI, 69.8%-71.5%), and NPV was 96.5% (95% CI, 96.2%-96.9%). Accuracy of ICD-10 diagnoses varied by patient age, influenza season definition, time between disease onset and testing, and clinical setting. Conclusions and Relevance: In this large cohort study, influenza ICD-10 discharge diagnoses were highly specific but moderately sensitive in identifying laboratory-confirmed influenza; the accuracy of influenza diagnoses varied by clinical and epidemiological factors. In the ED and inpatient settings, an ICD-10 diagnosis likely represents a true-positive influenza case.
Assuntos
Influenza Humana , Classificação Internacional de Doenças , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Criança , Pré-Escolar , Masculino , Feminino , Lactente , Adolescente , Estados Unidos/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Sensibilidade e Especificidade , Estudos de CoortesRESUMO
Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE: Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.
Assuntos
Interferon lambda , Pulmão , Metapneumovirus , Infecções por Paramyxoviridae , Replicação Viral , Animais , Humanos , Camundongos , Antivirais/farmacologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Células Epiteliais/imunologia , Interferon lambda/imunologia , Interferon lambda/farmacologia , Interferons/imunologia , Interferons/farmacologia , Pulmão/imunologia , Pulmão/virologia , Metapneumovirus/imunologia , Metapneumovirus/genética , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Replicação Viral/efeitos dos fármacosRESUMO
Acute sinusitis (AS) is the fifth leading cause of antibiotic prescriptions in children. Distinguishing bacterial AS from common viral upper respiratory infections in children is crucial to prevent unnecessary antibiotic use but is challenging with current diagnostic methods. Despite its speed and cost, untargeted RNA sequencing of clinical samples from children with suspected AS has the potential to overcome several limitations of other methods. However, the utility of sequencing-based approaches in analysis of AS has not been fully explored. Here, we performed RNA-seq of nasopharyngeal samples from 221 children with clinically diagnosed AS to characterize their pathogen and host-response profiles. Results from RNA-seq were compared with those obtained using culture for three common bacterial pathogens and qRT-PCR for 12 respiratory viruses. Metatranscriptomic pathogen detection showed high concordance with culture or qRT-PCR, showing 87%/81% sensitivity (sens) / specificity (spec) for detecting bacteria, and 86%/92% (sens/spec) for viruses, respectively. We also detected an additional 22 pathogens not tested for in the clinical panel, and identified plausible pathogens in 11/19 (58%) of cases where no organism was detected by culture or qRT-PCR. We assembled genomes of 205 viruses across the samples including novel strains of coronaviruses, respiratory syncytial virus (RSV), and enterovirus D68. By analyzing host gene expression, we identified host-response signatures that distinguished bacterial and viral infections and correlated with pathogen abundance. Ultimately, our study demonstrates the potential of untargeted metatranscriptomics for in depth analysis of the etiology of AS, comprehensive host-response profiling, and using these together to work towards optimized patient care.
RESUMO
Respiratory syncytial virus (RSV) is the leading cause of hospitalization among infants in the United States. In August 2023, CDC's Advisory Committee on Immunization Practices recommended nirsevimab, a long-acting monoclonal antibody, for infants aged <8 months to protect against RSV-associated lower respiratory tract infection during their first RSV season and for children aged 8-19 months at increased risk for severe RSV disease. In phase 3 clinical trials, nirsevimab efficacy against RSV-associated lower respiratory tract infection with hospitalization was 81% (95% CI = 62%-90%) through 150 days after receipt; post-introduction effectiveness has not been assessed in the United States. In this analysis, the New Vaccine Surveillance Network evaluated nirsevimab effectiveness against RSV-associated hospitalization among infants in their first RSV season during October 1, 2023-February 29, 2024. Among 699 infants hospitalized with acute respiratory illness, 59 (8%) received nirsevimab ≥7 days before symptom onset. Nirsevimab effectiveness was 90% (95% CI = 75%-96%) against RSV-associated hospitalization with a median time from receipt to symptom onset of 45 days (IQR = 19-76 days). The number of infants who received nirsevimab was too low to stratify by duration from receipt; however, nirsevimab effectiveness is expected to decrease with increasing time after receipt because of antibody decay. Although nirsevimab uptake and the interval from receipt of nirsevimab were limited in this analysis, this early estimate supports the current nirsevimab recommendation for the prevention of severe RSV disease in infants. Infants should be protected by maternal RSV vaccination or infant receipt of nirsevimab.
Assuntos
Anticorpos Monoclonais Humanizados , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Lactente , Criança , Humanos , Estados Unidos/epidemiologia , Estações do Ano , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Hospitalização , Infecções Respiratórias/epidemiologiaRESUMO
Introduction: With widely prevalent vaccine hesitancy and medical mistrust, future healthcare providers require knowledge of vaccines and comfort in discussing vaccines with patients. However, many U.S. medical schools do not offer formal or elective curricula focused on vaccine education. Methods: We sought to identify the need for such a curriculum and student gaps in knowledge through a pilot study surveying first- and second-year medical students at a large Pennsylvania medical school to assess knowledge about vaccine initiatives/policies, comfort in discussing vaccines, attitudes toward curricular changes, and effects of COVID-19 on willingness for vaccine education. Results: Many participants (>40%) reported insufficient knowledge of vaccine policy, vaccine development and testing, and community vaccine initiatives. The majority (>50%) indicated discomfort in discussing vaccines in a clinical setting. Importantly, 79% of participants reported insufficient coverage of vaccine topics in the current curriculum. A total of 54% decisively wanted formal/mandatory education versus 72% who decisively wanted elective education. Desiring formal education was associated with less comfort in discussing vaccines overall and with vaccine-hesitant people in clinical settings. Reassuringly, 74% of participants noted that the COVID-19 pandemic made them want to learn more about vaccines. Guided by these findings, we conducted a pilot elective teaching about vaccines through case studies, interactive discussions, and role-playing scenarios. Pre- and postcourse surveys showed improvement in student knowledge in all vaccine-related topics assessed. Conclusions: These data can inform the development of formal and elective curricula that effectively prepare medical students for patients' vaccine questions.
RESUMO
BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory illnesses in children. RSV can be broadly categorized into 2 major subtypes: A and B. RSV subtypes have been known to cocirculate with variability in different regions of the world. Clinical associations with viral subtype have been studied among children with conflicting findings such that no conclusive relationships between RSV subtype and severity have been established. METHODS: During 2016-2020, children aged <5 years were enrolled in prospective surveillance in the emergency department or inpatient settings at 7 US pediatric medical centers. Surveillance data collection included parent/guardian interviews, chart reviews, and collection of midturbinate nasal plus/minus throat swabs for RSV (RSV-A, RSV-B, and untyped) using reverse transcription polymerase chain reaction. RESULTS: Among 6398 RSV-positive children aged <5 years, 3424 (54%) had subtype RSV-A infections, 2602 (41%) had subtype RSV-B infections, and 272 (5%) were not typed, inconclusive, or mixed infections. In both adjusted and unadjusted analyses, RSV-A-positive children were more likely to be hospitalized, as well as when restricted to <1 year. By season, RSV-A and RSV-B cocirculated in varying levels, with 1 subtype dominating proportionally. CONCLUSIONS: Findings indicate that RSV-A and RSV-B may only be marginally clinically distinguishable, but both subtypes are associated with medically attended illness in children aged <5 years. Furthermore, circulation of RSV subtypes varies substantially each year, seasonally and geographically. With introduction of new RSV prevention products, this highlights the importance of continued monitoring of RSV-A and RSV-B subtypes.