Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 2(2): fcaa090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094280

RESUMO

Co-occurrence of tau and α-synuclein pathologies in a subset of Alzheimer's disease patients has led to the idea that mixed pathologies may play a unique characteristic role in the Alzheimer's disease neurodegenerative cascade. To understand the aetiology of such mixed pathologies, we investigated cross-seeding by human recombinant tau and human recombinant α-synuclein fibrillar species in a mouse model of tauopathy (Line PS19) or synucleinopathy (Line M20). Unilateral hippocampal injection of tau fibrils or α-synuclein fibrils, and to a lesser extent tau + α-synuclein copolymer fibrils prepared from co-incubating individual recombinant monomers, induced robust phosphorylated tau pathology in PS19 mice relative to control mice. Though the tau + α-synuclein copolymer fibrils did not modulate induction of pathologies at the site of injection, examination of the whole brain showed that these copolymers exacerbated neuroanatomic transmission of seeded tau pathology compared to tau fibril-injected mice. Only α-synuclein fibrils, but not tau alone or tau + α-synuclein copolymers, triggered modest levels of endogenous phosphorylated α-synuclein pathology. Overall, data from the PS19 mice suggest that human α-synuclein fibrils can efficiently cross-seed human tau and have a modest priming effect on mouse α-synuclein, and the presence of tau fibrils does not exacerbate the priming process. In M20 mice, unilateral hippocampal injection of α-synuclein fibrils or tau fibrils induced robust bilateral phosphorylated α-synuclein pathology, while tau + α-synuclein copolymer injection resulted in restricted phosphorylated α-synuclein pathology predominantly in the ipsilateral cortex. This suggests that human tau fibrils can also induce human α-synuclein pathogenesis, and the presence of combinatorial seeds is not synergistic. None of these aggregates induced phosphorylated tau pathology in M20 mice, showing that mouse tau cannot be primed efficiently by human tau fibrils or human α-synuclein fibrils. Neuropathological analysis of the whole brain of M20 mice showed that tau + α-synuclein copolymer-injected mice had lower abundance of bilaterally transmitted α-synuclein pathologies relative to α-synuclein fibril-injected mice. Thus, the tau + α-synuclein copolymer fibrils show robust transmission properties preferentially in rodent model of tauopathies but not in synucleinopathy, probably signifying an enhanced cooperative relationship between tau and α-synuclein in the tau seeding process. Together, our data highlight the unique cross-seeding properties of tau and αSyn in neurodegenerative proteinopathies.

2.
Mol Neurodegener ; 15(1): 8, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005122

RESUMO

One of the primary genetic risk factors for Alzheimer's disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid ß plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aß or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Predisposição Genética para Doença/genética , Animais , Apolipoproteína E4/metabolismo , Humanos
3.
Mol Neurobiol ; 57(4): 1986-2001, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31903524

RESUMO

Apolipoprotein E4 (APOE4) is the major genetic risk factor for sporadic Alzheimer's disease (AD), which is characterized by amyloid ß (Aß) plaques and tau tangles. Though the role of APOE4 in Aß pathogenesis has been mechanistically defined in rodent models, much less is known regarding the relationship of APOE4 to tau pathogenesis. Recent studies have indicated a possible correlation between APOE isoform-dependent alterations in tau pathology and neurodegeneration. To explore whether neuronal expression of APOE4 triggers tauopathy, here we delivered adeno-associated viruses (AAV) expressing human APOE4 in two different models of tauopathy-rTg4510 and PS19 lines. Intracerebroventricular delivery of AAV-APOE4 in neonatal rTg4510 and PS19 mice resulted in increased APOE4 protein in neurons but did not result in altered phosphorylated tau burden, pretangle tau pathology, or silver-positive tangle pathology. Biochemical analysis of synaptic proteins did not reveal substantial alterations. Our results indicate that over-expression of APOE4 in neurons, using an AAV-mediated approache, is not sufficient to accelerate or otherwise alter the inherent tau pathology that occurs in mice overexpressing mutant human tau.


Assuntos
Apolipoproteína E4/metabolismo , Cérebro/metabolismo , Dependovirus/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Cérebro/patologia , Modelos Animais de Doenças , Epitopos/metabolismo , Gliose/complicações , Gliose/patologia , Hipocampo/patologia , Humanos , Camundongos Transgênicos , Fosforilação , Sinapses/metabolismo , Tauopatias/complicações
4.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261380

RESUMO

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Assuntos
Sistema Nervoso Central/metabolismo , Mutação , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/psicologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/psicologia , Tauopatias/metabolismo , Tauopatias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA