Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 185: 71-78, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29355496

RESUMO

Glycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen. TbADS complemented a null mutant of Leishmania major lacking alkyl-dihydroxyacetonephosphate synthase activity and restored the formation of normal form of the ether lipid based virulence factor lipophosphoglycan. Despite lacking alkyl-dihydroxyacetonephosphate synthase activity, a null mutant of TbADS in procyclic trypanosomes remained viable and exhibited normal growth. Comprehensive analysis of cellular glycerophospholipids showed that TbADS was involved in the biosynthesis of all ether glycerophospholipid species, primarily found in the PE and PC classes.


Assuntos
Alquil e Aril Transferases/metabolismo , Glicerofosfolipídeos/biossíntese , Leishmania major/enzimologia , Microcorpos/enzimologia , Trypanosoma brucei brucei/enzimologia , Leishmania major/genética , Leishmania major/metabolismo , Mutação com Perda de Função , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espectrometria de Massas em Tandem , Trypanosoma brucei brucei/metabolismo
2.
PLoS One ; 12(7): e0181432, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715456

RESUMO

Glycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s). This work presents the characterization of the alternative, dihydroxyacetonephosphate acyltransferase TbDAT, which acylates primarily dihydroxyacetonephosphate and prefers palmitoyl-CoA as an acyl-CoA donor. TbDAT restores the viability of a yeast double null mutant that lacks glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferase activities. A conditional null mutant of TbDAT in T. brucei procyclic form was created and characterized. TbDAT was important for survival during stationary phase and synthesis of ether lipids. In contrast, TbDAT was dispensable for normal growth. Our results show that in T. brucei procyclic forms i) TbDAT but not TbGAT is the physiologically relevant initial acyltransferase and ii) ether lipid precursors are primarily made by TbDAT.


Assuntos
Aciltransferases/metabolismo , Éteres Fosfolipídicos/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Aciltransferases/genética , Western Blotting , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Microcorpos/metabolismo , Mutação , Espectrometria de Massas por Ionização por Electrospray
3.
J Colloid Interface Sci ; 481: 20-7, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450888

RESUMO

HYPOTHESIS: Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. EXPERIMENTS: For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. FINDINGS: Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA