Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Exp Hematol ; 129: 104123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37875176

RESUMO

When hematopoietic cells are overwhelmed with ionizing radiation (IR) DNA damage, the alternative non-homologous end-joining (aNHEJ) repair pathway is activated to repair stressed replication forks. While aNHEJ can rescue cells overwhelmed with DNA damage, it can also mediate chromosomal deletions and fusions, which can cause mis-segregation in mitosis and resultant aneuploidy. We previously reported that a hematopoietic microRNA, miR-223-3p, normally represses aNHEJ. We found that miR-223-/- mice have increased survival of hematopoietic stem and progenitor cells (HSPCs) after sublethal IR. However, this came at the cost of significantly more genomic aberrancies, with miR-223-/- hematopoietic progenitors having increased metaphase aberrancies, including chromothripsis, and increased sequence abnormalities, especially deletions, which is consistent with aNHEJ. These data imply that when an HSPC is faced with substantial DNA damage, it may trade genomic damage for its own survival by choosing the aNHEJ repair pathway, and this choice is regulated in part by miR-223-3p.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Radiação Ionizante , Instabilidade Genômica
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069223

RESUMO

Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.


Assuntos
Reparo do DNA , Replicação do DNA , Humanos , Dano ao DNA , Endonucleases/metabolismo , Instabilidade Genômica , DNA , Nucleotídeos
3.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953292

RESUMO

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Assuntos
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicação do DNA , Instabilidade Genômica , Magnésio , MicroRNAs/genética , Neoplasias/genética , Estruturas R-Loop
4.
Methods Mol Biol ; 2701: 91-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574477

RESUMO

The mammalian cell genome is continuously exposed to endogenous and exogenous insults that modify its DNA. These modifications can be single-base lesions, bulky DNA adducts, base dimers, base alkylation, cytosine deamination, nitrosation, or other types of base alteration which interfere with DNA replication. Mammalian cells have evolved with a robust defense mechanism to repair these base modifications (damages) to preserve genomic stability. Base excision repair (BER) is the major defense mechanism for cells to remove these oxidative or alkylated single-base modifications. The base excision repair process involves replacement of a single-nucleotide residue by two sub-pathways, the single-nucleotide (SN) and the multi-nucleotide or long-patch (LP) base excision repair pathways. These reactions have been reproduced in vitro using cell free extracts or purified recombinant proteins involved in the base excision repair pathway. In the present chapter, we describe the detailed methodology to reconstitute base excision repair assay systems. These reconstitutive BER assay systems use artificially synthesized and modified DNA. These reconstitutive assay system will be a true representation of biologically occurring damages and their repair.

5.
NAR Cancer ; 5(1): zcac044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683914

RESUMO

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

6.
Cancer Chemother Pharmacol ; 91(1): 89-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346454

RESUMO

PURPOSE: The BCL-2 family of anti-apoptotic proteins, BCL-2, BCL-XL and MCL-1, can mediate survival of some types of cancer. DT2216 is a PROteolysis-TArgeting Chimera (PROTAC) that degrades BCL-XL specifically and is in phase 1 trials. We sought to define the frequency and mechanism of resistance to DT2216 in T-cell acute lymphoblastic leukemia (T-ALL) cell lines. METHODS: We measured cell survival and protein levels of BCL-XL, BCL-2, MCL-1 and the pro-apoptotic BIM in 13 distinct T-ALL cell lines after exposure to varying concentrations of DT2216. RESULTS: We identified concentrations of DT2216 which were cytotoxic to each T-ALL cell line. These concentrations have no correlation with the initial protein levels of BCL-XL, BCL-2, MCL-1 or BIM in each cell line. However, there was a correlation between survival to DT2216 and the efficiency of degradation of BCL-XL by DT2216. Only one cell line, SUP-T1, had significant resistance to DT2216, defined as an IC50 above what is achievable in murine tumors in vivo. CONCLUSION: Resistance to DT2216 is rare in a wide variety of T-ALL cells but when it occurs is correlated with decreased BCL-XL degradation. Resistance to DT2216 in T-ALL is not predicted by initial BCL-XL or BIM protein levels, or BCL-2 or MCL-1 levels before or after treatment. These data imply that a phase 2 clinical trial of DT2216 in T-ALL should be widely available and not limited to a subset of patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Proteína bcl-X/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteólise , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2 , Linfócitos T/metabolismo , Apoptose
7.
iScience ; 25(12): 105626, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36471805

RESUMO

Tumors with BRCA1 mutations have poor prognoses due to genomic instability. Yet this genomic instability has risks and BRCA1-deficient (def) cancer cells must develop pathways to mitigate these risks. One such risk is the accumulation of unfolded proteins in BRCA1-def cancers from increased mutations due to their loss of genomic integrity. Little is known about how BRCA1-def cancers survive their genomic instability. Here we show that BRCA1 is an E3 ligase in the endoplasmic reticulum (ER) that targets the unfolded protein response (UPR) stress sensors, Eukaryotic Translation Initiation Factor 2-alpha Kinase 3 (PERK) and Serine/Threonine-Protein Kinase/Endoribonuclease Inositol-Requiring Enzyme 1 (IRE1) for ubiquitination and subsequent proteasome-mediated degradation. When BRCA1 is mutated or depleted, both PERK and IRE1 protein levels are increased, resulting in a constitutively activated UPR. Furthermore, the inhibition of protein folding or UPR signaling markedly decreases the overall survival of BRCA1-def cancer cells. Our findings define a mechanism used by the BRCA1-def cancer cells to survive their increased unfolded protein burden which can be used to develop new therapeutic strategies to treat these cancers.

8.
Animals (Basel) ; 12(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35565640

RESUMO

There is evidence to suggest that the Coronavirus Disease 2019 (COVID-19) pandemic may hamper our achievement of the Sustainable Development Goals (SDGs). Here, we use non-human primates as a case study to examine the impacts of COVID-19 on the ability to achieve biodiversity conservation and management sustainability targets. We collected data through a survey of members of the IUCN SSC Primate Specialist Group from January to March 2022. Of the 93 experts that responded to our survey, we found that 39% had not been able to visit any of their field sites since March 2020, 54% said they had less funding available for their primate-related work, and only one out of ten said they had managed to achieve at least 76-100% of their planned primate-related work since March 2020. Six out of ten respondents (61%) felt that primate conservation efforts in protected areas were worse than before the onset of the COVID-19 pandemic and one-third (33%) felt hunting was happening more frequently than before. This study provides evidence of the impacts of COVID-19 on progress towards achieving the SDGs, and provides practical lessons learned for biodiversity conservation efforts moving forward.

9.
Am J Primatol ; 83(12): e23338, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662462

RESUMO

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.


Assuntos
Hominidae , África Central , África Ocidental , Animais , República Centro-Africana , Coleta de Dados , Gorilla gorilla , Pan troglodytes
10.
PLoS One ; 16(7): e0252805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197491

RESUMO

Chemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7. We and others have reported that venule endothelium expressing CCL21 plays a crucial role in attracting naïve immune cells to sites of antigen presentation. In this study we generated a series of monoclonal antibodies to the amino terminus of CCL21 in an attempt to generate an antibody that blocked the interaction of CCL21 with its receptor CCR7. We found one humanized clone that blocked naïve T-cell migration towards CCL21, while memory effector T-cells were less affected. Using this monoclonal antibody, we also demonstrated that CCL21 is expressed in the mucosal venule endothelium of the large majority of inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and also in celiac disease. This expression correlated with active IBD in 5 of 6 cases, whereas none of 6 normal bowel biopsies had CCL21 expression. This study raises the possibility that this monoclonal antibody could be used to diagnose initial or recurrent of IBD. Significantly, this antibody could also be used for therapeutic intervention in IBD by selectively interfering with recruitment of naïve immune effector cells to sites of antigen presentation, without harming overall memory immunity.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Quimiocina CCL21/imunologia , Doenças Inflamatórias Intestinais/diagnóstico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quimiotaxia/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores CCR7/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
11.
Am J Primatol ; 83(1): e23213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169878

RESUMO

Despite the large body of literature on ape conservation, much of the data needed for evidence-based conservation decision-making is still not readily accessible and standardized, rendering cross-site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki (https://apeswiki.eva.mpg.de), an open-access platform providing site-level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open-access platform and based on the well-known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Pan troglodytes , África Ocidental , Animais
13.
J Biol Chem ; 295(24): 8186-8194, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350107

RESUMO

USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Dano ao DNA , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Ligação Proteica , Estrutura Secundária de Proteína
14.
DNA Repair (Amst) ; 86: 102769, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31887540

RESUMO

The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the removal of oxidized or mono-alkylated DNA. While the main components of the BER pathway are well defined, its regulatory mechanism is not yet understood. We report here that the splicing factor ISY1 enhances apurinic/apyrimidinic endonuclease 1 (APE1) activity, the multifunctional enzyme in BER, by promoting its 5'-3' endonuclease activity. ISY1 expression is induced by oxidative damage, which would provide an immediate up-regulation of APE1 activity in vivo and enhance BER of oxidized bases. We further found that APE1 and ISY1 interact, and ISY1 enhances the ability of APE1 to recognize abasic sites in DNA. Using purified recombinant proteins, we reconstituted BER and demonstrated that ISY1 markedly promoted APE1 activity in both the short- and long-patch BER pathways. Our study identified ISY1 as a regulator of the BER pathway, which would be of physiological relevance where suboptimal levels of APE1 are present. The interaction of ISY1 and APE1 also establishes a connection between DNA damage repair and pre-mRNA splicing.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fatores de Processamento de RNA/metabolismo , Células A549 , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Estresse Oxidativo , Células PC-3 , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 116(35): 17438-17443, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395736

RESUMO

Defects in DNA repair give rise to genomic instability, leading to neoplasia. Cancer cells defective in one DNA repair pathway can become reliant on remaining repair pathways for survival and proliferation. This attribute of cancer cells can be exploited therapeutically, by inhibiting the remaining repair pathway, a process termed synthetic lethality. This process underlies the mechanism of the Poly-ADP ribose polymerase-1 (PARP1) inhibitors in clinical use, which target BRCA1 deficient cancers, which is indispensable for homologous recombination (HR) DNA repair. HR is the major repair pathway for stressed replication forks, but when BRCA1 is deficient, stressed forks are repaired by back-up pathways such as alternative nonhomologous end-joining (aNHEJ). Unlike HR, aNHEJ is nonconservative, and can mediate chromosomal translocations. In this study we have found that miR223-3p decreases expression of PARP1, CtIP, and Pso4, each of which are aNHEJ components. In most cells, high levels of microRNA (miR) 223-3p repress aNHEJ, decreasing the risk of chromosomal translocations. Deletion of the miR223 locus in mice increases PARP1 levels in hematopoietic cells and enhances their risk of unprovoked chromosomal translocations. We also discovered that cancer cells deficient in BRCA1 or its obligate partner BRCA1-Associated Protein-1 (BAP1) routinely repress miR223-3p to permit repair of stressed replication forks via aNHEJ. Reconstituting the expression of miR223-3p in BRCA1- and BAP1-deficient cancer cells results in reduced repair of stressed replication forks and synthetic lethality. Thus, miR223-3p is a negative regulator of the aNHEJ DNA repair and represents a therapeutic pathway for BRCA1- or BAP1-deficient cancers.


Assuntos
Proteína BRCA1/deficiência , Predisposição Genética para Doença , MicroRNAs/genética , Neoplasias/genética , Mutações Sintéticas Letais , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Reparo do DNA , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Instabilidade Genômica , Humanos , Reparo de DNA por Recombinação , Translocação Genética
16.
Am J Primatol ; 81(9): e23042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31468565

RESUMO

As animal populations continue to decline, frequently driven by large-scale land-use change, there is a critical need for improved environmental planning. While data-driven spatial planning is widely applied in conservation, as of yet it is rarely used for primates. The western chimpanzee (Pan troglodytes verus) declined by 80% within 24 years and was uplisted to Critically Endangered by the IUCN Red List of Threatened Species in 2016. To support conservation planning for western chimpanzees, we systematically identified geographic areas important for this taxon. We based our analysis on a previously published data set of modeled density distribution and on several scenarios that accounted for different spatial scales and conservation targets. Across all scenarios, typically less than one-third of areas we identified as important are currently designated as high-level protected areas (i.e., national park or IUCN category I or II). For example, in the scenario for protecting 50% of all chimpanzees remaining in West Africa (i.e., approximately 26,500 chimpanzees), an area of approximately 60,000 km2 was selected (i.e., approximately 12% of the geographic range), only 24% of which is currently designated as protected areas. The derived maps can be used to inform the geographic prioritization of conservation interventions, including protected area expansion, "no-go-zones" for industry and infrastructure, and conservation sites outside the protected area network. Environmental guidelines by major institutions funding infrastructure and resource extraction projects explicitly require corporations to minimize the negative impact on great apes. Therefore, our results can inform avoidance and mitigation measures during the planning phases of such projects. This study was designed to inform future stakeholder consultation processes that could ultimately integrate the conservation of western chimpanzees with national land-use priorities. Our approach may help in promoting similar work for other primate taxa to inform systematic conservation planning in times of growing threats.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Pan troglodytes , África Ocidental , Animais
17.
Nat Commun ; 10(1): 2849, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253762

RESUMO

Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas Nucleares/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Ligação a RNA , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
18.
J Biol Chem ; 293(44): 17061-17069, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224356

RESUMO

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic resection of the DNA break ends. The current model, being based primarily on genetic analyses in Saccharomyces cerevisiae and companion biochemical reconstitution studies, posits that end resection proceeds in two distinct stages. Specifically, the initiation of resection is mediated by the nuclease activity of the Mre11-Rad50-Xrs2 (MRX) complex in conjunction with its cofactor Sae2, and long-range resection is carried out by exonuclease 1 (Exo1) or the Sgs1-Top3-Rmi1-Dna2 ensemble. Using fully reconstituted systems, we show here that DNA with ends occluded by the DNA end-joining factor Ku70-Ku80 becomes a suitable substrate for long-range 5'-3' resection when a nick is introduced at a locale proximal to one of the Ku-bound DNA ends. We also show that Sgs1 can unwind duplex DNA harboring a nick, in a manner dependent on a species-specific interaction with the ssDNA-binding factor replication protein A (RPA). These biochemical systems and results will be valuable for guiding future endeavors directed at delineating the mechanistic intricacy of DNA end resection in eukaryotes.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/genética , Recombinação Homóloga , RecQ Helicases/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
PeerJ ; 6: e4869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922508

RESUMO

Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.

20.
Nat Commun ; 9(1): 2377, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915352

RESUMO

The transition of hematopoiesis from the fetal liver (FL) to the bone marrow (BM) is incompletely characterized. We demonstrate that the Wiskott-Aldrich syndrome verprolin-homologous protein (WAVE) complex 2 is required for this transition, as complex degradation via deletion of its scaffold Hem-1 causes the premature exhaustion of neonatal BM hematopoietic stem cells (HSCs). This exhaustion of BM HSC is due to the failure of BM engraftment of Hem-1-/- FL HSCs, causing early death. The Hem-1-/- FL HSC engraftment defect is not due to the lack of the canonical function of the WAVE2 complex, the regulation of actin polymerization, because FL HSCs from Hem-1-/- mice exhibit no defects in chemotaxis, BM homing, or adhesion. Rather, the failure of Hem-1-/- FL HSC engraftment in the marrow is due to the loss of c-Abl survival signaling from degradation of the WAVE2 complex. However, c-Abl activity is dispensable for the engraftment of adult BM HSCs into the BM. These findings reveal a novel function of the WAVE2 complex and define a mechanism for FL HSC fitness in the embryonic BM niche.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Medula Óssea/fisiologia , Hematopoese , Fígado/embriologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Desenvolvimento Fetal , Células-Tronco Hematopoéticas/fisiologia , Fígado/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-abl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA