RESUMO
[This corrects the article DOI: 10.3389/fnhum.2023.1286238.].
RESUMO
As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.
Assuntos
Doença de Alzheimer , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Masculino , Idoso , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Biomarcadores , Genótipo , Fatores Sexuais , Estudos de Casos e ControlesRESUMO
BACKGROUND: Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS: This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION: We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION: ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Assuntos
Transtornos Motores , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estudos Cross-Over , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Extremidade Superior , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
OBJECTIVE: This quasi-experimental study examined the effect of repetitive finger stimulation on brain activation in eight stroke and seven control subjects, measured by quantitative electroencephalogram. METHODS: We applied 5 mins of 2-Hz repetitive bilateral index finger transcutaneous electrical nerve stimulation and compared differences pre- and post-transcutaneous electrical nerve stimulation using quantitative electroencephalogram metrics delta/alpha ratio and delta-theta/alpha-beta ratio. RESULTS: Between-group differences before and after stimulation were significantly different in the delta/alpha ratio ( z = -2.88, P = 0.0040) and the delta-theta/alpha-beta ratio variables ( z = -3.90 with P < 0.0001). Significant decrease in the delta/alpha ratio and delta-theta/alpha-beta ratio variables after the transcutaneous electrical nerve stimulation was detected only in the stroke group (delta/alpha ratio diff = 3.87, P = 0.0211) (delta-theta/alpha-beta ratio diff = 1.19, P = 0.0074). CONCLUSIONS: The decrease in quantitative electroencephalogram metrics in the stroke group may indicate improved brain activity after transcutaneous electrical nerve stimulation. This finding may pave the way for a future novel therapy based on transcutaneous electrical nerve stimulation and quantitative electroencephalogram measures to improve brain recovery after stroke.
Assuntos
Acidente Vascular Cerebral , Estimulação Elétrica Nervosa Transcutânea , Humanos , Acidente Vascular Cerebral/terapia , Dedos , Encéfalo , SobreviventesRESUMO
Introduction: Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract (CST) and hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). This proof-of-concept study aims to develop a non-invasive brain stimulation protocol that facilitates the lesioned CST and inhibits the contralesional CRST to improve upper extremity rehabilitation in individuals with moderate-to-severe motor impairments post-stroke. Methods: Fourteen individuals (minimum 3 months post ischemic stroke) consented. Physician decision of the participants baseline assessment qualified eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham stimulation, with a two-week washout period in-between. Subject-specific MR images and computer simulation were used to guide HD-tDCS and verified by Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity score (primary outcome measure) and the excitability of the ipslesoinal CST and contralesional CRST was determined by the change of MEP latencies and amplitude (secondary outcome measures). Results: The baseline ipsilesional M1 MEP latency and amplitude were correlated with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after HD-tDCS. Discussion: These results suggest that HD-tDCS could improve the function of the lesioned corticospinal tract and reduce the excitability of the contralesional cortico-reticulospinal tract, thus, improving motor function of the upper extremity in more severely impaired individuals.
RESUMO
The cortical motor system can be reorganized following a stroke, with increased recruitment of the contralesional hemisphere. However, it is unknown whether a similar hemispheric shift occurs in the somatosensory system to adapt to this motor change, and whether this is related to movement impairments. This proof-of-concept study assessed somatosensory evoked potentials (SEPs), P50 and N100, in hemiparetic stroke participants and age-matched controls using high-density electroencephalograph (EEG) recordings during tactile finger stimulation. The laterality index was calculated to determine the hemispheric dominance of the SEP and re-confirmed with source localization. The study found that latencies of P50 and N100 were significantly delayed in stroke brains when stimulating the paretic hand. The amplitude of P50 in the contralateral (to stimulated hand) hemisphere was negatively correlated with the Fügl-Meyer upper extremity motor score in stroke. Bilateral cortical responses were detected in stroke, while only contralateral cortical responses were shown in controls, resulting in a significant difference in the laterality index. These results suggested that somatosensory reorganization after stroke involves increased recruitment of ipsilateral cortical regions, especially for the N100 SEP component. This reorganization delays the latency of somatosensory processing after a stroke. This research provided new insights related to the somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective.