Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health Perspect ; 130(6): 67010, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767012

RESUMO

BACKGROUND: Positive correlations have been reported between wastewater SARS-CoV-2 concentrations and a community's burden of infection, disease or both. However, previous studies mostly compared wastewater to clinical case counts or nonrepresentative convenience samples, limiting their quantitative potential. OBJECTIVES: This study examined whether wastewater SARS-CoV-2 concentrations could provide better estimations for SARS-CoV-2 community prevalence than reported cases of COVID-19. In addition, this study tested whether wastewater-based epidemiology methods could identify neighborhood-level COVID-19 hotspots and SARS-CoV-2 variants. METHODS: Community SARS-CoV-2 prevalence was estimated from eight randomized door-to-door nasal swab sampling events in six Oregon communities of disparate size, location, and demography over a 10-month period. Simultaneously, wastewater SARS-CoV-2 concentrations were quantified at each community's wastewater treatment plant and from 22 Newport, Oregon, neighborhoods. SARS-CoV-2 RNA was sequenced from all positive wastewater and nasal swab samples. Clinically reported case counts were obtained from the Oregon Health Authority. RESULTS: Estimated community SARS-CoV-2 prevalence ranged from 8 to 1,687/10,000 persons. Community wastewater SARS-CoV-2 concentrations ranged from 2.9 to 5.1 log10 gene copies per liter. Wastewater SARS-CoV-2 concentrations were more highly correlated (Pearson's r=0.96; R2=0.91) with community prevalence than were clinically reported cases of COVID-19 (Pearson's r=0.85; R2=0.73). Monte Carlo simulations indicated that wastewater SARS-CoV-2 concentrations were significantly better than clinically reported cases at estimating prevalence (p<0.05). In addition, wastewater analyses determined neighborhood-level COVID-19 hot spots and identified SARS-CoV-2 variants (B.1 and B.1.399) at the neighborhood and city scales. DISCUSSION: The greater reliability of wastewater SARS-CoV-2 concentrations over clinically reported case counts was likely due to systematic biases that affect reported case counts, including variations in access to testing and underreporting of asymptomatic cases. With these advantages, combined with scalability and low costs, wastewater-based epidemiology can be a key component in public health surveillance of COVID-19 and other communicable infections. https://doi.org/10.1289/EHP10289.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oregon/epidemiologia , Prevalência , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
ACS ES T Water ; 2(10): 1667-1677, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37552730

RESUMO

Multiple studies worldwide have confirmed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected in wastewater. However, there is a lack of data directly comparing the wastewater SARS-CoV-2 RNA concentration with the prevalence of coronavirus disease 2019 (COVID-19) in individuals living in sewershed areas. Here, we correlate wastewater SARS-CoV-2 signals with SARS-CoV-2 positivity rates in symptomatic and asymptomatic individuals and compare positivity rates in two underserved communities in Portland, Oregon to those reported in greater Multnomah County. 403 individuals were recruited via two COVID-19 testing sites over a period of 16 weeks. The weekly SARS-CoV-2 positivity rate in our cohort ranged from 0 to 21.7% and trended higher than symptomatic positivity rates reported by Multnomah County (1.9-8.7%). Among the 362 individuals who reported symptom status, 76 were symptomatic and 286 were asymptomatic. COVID-19 was detected in 35 participants: 24 symptomatic, 9 asymptomatic, and 2 of unknown symptomatology. Wastewater testing yielded 0.33-149.9 viral RNA genomic copies/L/person and paralleled community COVID-19 positive test rates. In conclusion, wastewater sampling accurately identified increased SARS-CoV-2 within a community. Importantly, the rate of SARS-CoV-2 positivity in underserved areas is higher than positivity rates within the County as a whole, suggesting a disproportionate burden of SARS-CoV-2 in these communities.

3.
Environ Sci Technol Lett ; 9(2): 160-165, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566370

RESUMO

With the rapid onset of the COVID-19 pandemic, wastewater-based epidemiology sampling methodologies for SARS-CoV-2 were often implemented quickly and may not have considered the unique drainage catchment characteristics. This study assessed the impact of grab versus composite sampling on the detection and quantification of SARS-CoV-2 in four different catchment scales with flow rates ranging from high flow (wastewater treatment plant influent) to medium flow (neighborhood scale) to low-flow (city block scale) to ultralow flow (building scale). At the high-flow site, grab samples were comparable to 24 h composite samples with SARS-CoV-2 detected in all samples and differed in concentration from the composite by <1 log 10 unit. However, as the size of the catchment decreased, the percentage of negative grab samples increased despite all respective composites being positive, and the SARS-CoV-2 concentrations of grab samples varied from those of the composites by up to almost 2 log 10 units. At the ultra-low-flow site, increased sampling frequencies generated composite samples with higher fidelity to the 5 min composite, which is the closest estimate of the true SARS-CoV-2 composite concentration that could be measured. Thus, composite sampling is more likely to compensate for temporal signal variability while grab samples do not, especially as the catchment basin size decreases.

4.
Appl Microbiol Biotechnol ; 77(6): 1359-65, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18043916

RESUMO

The filamentous fungus Graphium sp. (ATCC 58400) co-metabolically oxidizes the gasoline oxygenate methyl tertiary butyl ether (MTBE) after growth on gaseous n-alkanes. In this study, the enzymology and regulation of MTBE oxidation by propane-grown mycelia of Graphium sp. were further investigated and defined. The trends observed during MTBE oxidation closely resembled those described for propane-grown cells of the bacterium Mycobacterium vaccae JOB5. Propane-grown mycelia initially oxidized the majority ( approximately 95%) of MTBE to tertiary butyl formate (TBF), and this ester was biotically hydrolyzed to tertiary butyl alcohol (TBA). However, unlike M. vaccae JOB5, our results collectively suggest that propane-grown mycelia only have a limited capacity to degrade TBA. None of the products of MTBE exerted a physiologically relevant regulatory effect on the rate of MTBE or propane oxidation, and no significant effect of TBA was observed on the rate of TBF hydrolysis. Together, these results suggest that the regulatory effects of MTBE oxidation intermediates proposed for MTBE-degrading organisms such as Mycobacterium austroafricanum are not universally relevant mechanisms for MTBE-degrading organisms. The results of this study are discussed in terms of their impact on our understanding of the diversity of aerobic MTBE-degrading organisms and pathways and enzymes involved in these processes.


Assuntos
Ascomicetos/metabolismo , Éteres Metílicos/antagonistas & inibidores , Éteres Metílicos/metabolismo , Biodegradação Ambiental , Micélio/metabolismo , Oxirredução , Propano/metabolismo , terc-Butil Álcool/metabolismo
5.
Waste Manag ; 23(8): 719-28, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14522190

RESUMO

The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.


Assuntos
Conservação dos Recursos Naturais , Materiais de Construção , Hidrocarbonetos , Borracha , Poluentes do Solo/análise , Poluentes da Água/análise , Animais , Benzotiazóis , Biodegradação Ambiental , Clorófitas , Daphnia , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Poluentes do Solo/toxicidade , Tiazóis/análise , Tiazóis/toxicidade , Testes de Toxicidade , Meios de Transporte , Volatilização , Poluentes da Água/toxicidade
6.
Biodegradation ; 13(6): 373-81, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12713129

RESUMO

The soil nitrifying bacterium Nitrosomonas europaea has shown the ability to transform cometabolically naphthalene as well as other 2- and 3-ringed polycyclic aromatic hydrocarbons (PAHs) to more oxidized products. All of the observed enzymatic reactions were inhibited by acetylene, a selective inhibitor of ammonia monooxygenase (AMO). A strong inhibitory effect of naphthalene on ammonia oxidation by N. europaea was observed. Naphthalene was readily oxidized by N. europaea and 2-naphthol was detected as a major product (85%) of naphthalene oxidation. The maximum naphthol production rate was 1.65 nmole/mg protein-min in the presence of 240 microM naphthalene and 10 mM NH4+. Our results demonstrate that the oxidation between ammonia and naphthalene showed a partial competitive inhibition. The relative ratio of naphthalene and ammonia oxidation, depending on naphthalene concentrations, demonstrated that the naphthalene was oxidized 2200-fold slower than ammonia at lower concentration of naphthalene (15 microM) whereas naphthalene was oxidized only 100-fold slower than ammonia oxidation. NH4(+)- and N2H4-dependent O2 uptake measurement demonstrated irreversible inhibitory effects of the naphthalene and subsequent oxidation products on AMO and HAO activity.


Assuntos
Naftalenos/metabolismo , Nitrosomonas europaea/metabolismo , Oxigênio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Acetileno/farmacologia , Amônia/metabolismo , Ligação Competitiva , Biodegradação Ambiental , Cinética , Naftalenos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA