Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Comput ; 12(5): 1207-45, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10905814

RESUMO

We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter nu lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter epsilon in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of nu, and report experimental results.

2.
J Acoust Soc Am ; 107(1): 392-403, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10641648

RESUMO

This paper introduces an efficient parameterization for the nearfield broadband beamforming problem with a single parameter to focus the beamformer to a desired operating radius and another set of parameters to control the actual broadband beampattern shape. The parameterization is based on an orthogonal basis set of elementary beampatterns by which an arbitrary beampattern can be constructed. A set of elementary beamformers are then designed for each elementary beampattern and the desired beamformer is constructed by summing the elementary beamformers with frequency and source-array distance dependent weights. An important consequence of our result is that the beamformer can be factored into three levels of filtering: (i) beampattern independent elementary beamformers; (ii) beampattern shape dependent filters; and (iii) radial focusing filters where a single parameter can be adjusted to focus the array to a desired radial distance from the array origin. As an illustration the method is applied to the problem of producing a practical array design that achieves a frequency invariant beampattern over the frequency range of 1:10 (which is suitable for speech acquisition using a microphone array), and with the array focused either to farfield or nearfield where at the lowest frequency the radial distance to the source is only three wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA