Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 92(3): 033516, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820046

RESUMO

Electron-positron pairs, produced in intense laser-solid interactions, are diagnosed using magnetic spectrometers with image plates, such as the National Ignition Facility Electron-Positron-Proton Spectrometers (EPPSs). Although modeling can help infer the quantitative value, the accuracy of the models needs to be verified to ensure measurement quality. The dispersion of low-energy electrons and positrons may be affected by fringe magnetic fields near the entrance of the EPPS. We have calibrated the EPPS with six electron beams from a Siemens Oncor linear accelerator (linac) ranging in energy from 2.7 MeV to 15.2 MeV as they enter the spectrometer. A Geant4 traveling-wave optical parametric amplifier of superfluorescence Monte Carlo simulation was set up to match depth dose curves and lateral profiles measured in water at 100 cm source-surface distance. An accurate relationship was established between the bending magnet current setting and the energy of the electron beam at the exit window. The simulations and measurements were used to determine the energy distributions of the six electron beams at the EPPS slit. Analysis of the scanned image plates together with the determined energy distribution arriving in the spectrometer provides improved dispersion curves for the EPPS.

3.
Phys Plasmas ; 17(4)2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20838426

RESUMO

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA