Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
medRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38947030

RESUMO

Background: Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. Methods: WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. Results/Conclusions: At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids downregulated muscle proteins and upregulated certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.

2.
JCI Insight ; 9(3)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175727

RESUMO

The Murphy Roths Large (MRL) mouse strain has "super-healing" properties that enhance recovery from injury. In mice, the DBA/2J strain intensifies many aspects of muscular dystrophy, so we evaluated the ability of the MRL strain to suppress muscular dystrophy in the Sgcg-null mouse model of limb girdle muscular dystrophy. A comparative analysis of Sgcg-null mice in the DBA/2J versus MRL strains showed greater myofiber regeneration, with reduced structural degradation of muscle in the MRL strain. Transcriptomic profiling of dystrophic muscle indicated strain-dependent expression of extracellular matrix (ECM) and TGF-ß signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized myoscaffolds. Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-ß1 and TGF-ß3 throughout the matrix. Dystrophic myoscaffolds from the MRL background, but not the DBA/2J background, were enriched in myokines like IGF-1 and IL-6. C2C12 myoblasts seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J muscles showed the MRL background induced greater myoblast differentiation compared with dystrophic DBA/2J myoscaffolds. Thus, the MRL background imparts its effect through a highly regenerative ECM, which is active even in muscular dystrophy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Camundongos , Animais , Camundongos Endogâmicos DBA , Distrofias Musculares/genética , Músculos , Matriz Extracelular , Camundongos Knockout
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050701

RESUMO

Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Diferenciação Celular
4.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425960

RESUMO

Genetic background shifts the severity of muscular dystrophy. In mice, the DBA/2J strain confers a more severe muscular dystrophy phenotype, whereas the Murphy's Roth Large (MRL) strain has "super-healing" properties that reduce fibrosis. A comparative analysis of the Sgcg null model of Limb Girdle Muscular Dystrophy in the DBA/2J versus MRL strain showed the MRL background was associated with greater myofiber regeneration and reduced structural degradation of muscle. Transcriptomic profiling of dystrophic muscle in the DBA/2J and MRL strains indicated strain-dependent expression of the extracellular matrix (ECM) and TGF-ß signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized "myoscaffolds". Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-ß1 and TGF-ß3 throughout the matrix, and dystrophic myoscaffolds from the MRL background were enriched in myokines. C2C12 myoblasts were seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J matrices. Acellular myoscaffolds from the dystrophic MRL background induced myoblast differentiation and growth compared to dystrophic myoscaffolds from the DBA/2J matrices. These studies establish that the MRL background also generates its effect through a highly regenerative ECM, which is active even in muscular dystrophy.

5.
Mol Biol Cell ; 34(4): br5, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753381

RESUMO

Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.


Assuntos
Nucléolo Celular , Neoplasias , Animais , Nucléolo Celular/metabolismo , Centrômero , Núcleo Celular/metabolismo , Mamíferos , Neoplasias/metabolismo
6.
EMBO J ; 40(24): e108307, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34786730

RESUMO

Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.


Assuntos
Autoantígenos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Código das Histonas , Histonas/química , Humanos , Nucleossomos/metabolismo , Domínios Proteicos
7.
Curr Biol ; 29(22): R1194-R1196, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31743678

RESUMO

Human artificial chromosomes (HACs) are a potentially powerful technique for genomic engineering, but their use is limited by the repetitive centromeric alpha-satellite DNA needed to form a centromere. A new study presents a method to induce HAC centromere formation on non-repetitive templates through sequence-directed CENP-A nucleosome seeding.


Assuntos
Cromossomos Artificiais Humanos , Centrômero , Proteína Centromérica A , Proteína B de Centrômero , DNA Satélite , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA