Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353043

RESUMO

Many mammals hibernate during winter, reducing energy expenditure via bouts of torpor. The majority of a hibernator's energy reserves are used to fuel brief, but costly, arousals from torpor. Although arousals likely serve multiple functions, an important one is to restore water stores depleted during torpor. Many hibernating bat species require high humidity, presumably to reduce torpid water loss, but big brown bats (Eptesicus fuscus) appear tolerant of a wide humidity range. We tested the hypothesis that hibernating female E. fuscus use behavioural flexibility during torpor and arousals to maintain water balance and reduce energy expenditure. We predicted: (1) E. fuscus hibernating in dry conditions would exhibit more compact huddles during torpor and drink more frequently than bats in high humidity conditions; and (2) the frequency and duration of torpor bouts and arousals, and thus total loss of body mass would not differ between bats in the two environments. We housed hibernating E. fuscus in temperature- and humidity-controlled incubators at 50% or 98% relative humidity (8°C, 110 days). Bats in the dry environment maintained a more compact huddle during torpor and drank more frequently during arousals. Bats in the two environments had a similar number of arousals, but arousal duration was shorter in the dry environment. However, total loss of body mass over hibernation did not differ between treatments, indicating that the two groups used similar amounts of energy. Our results suggest that behavioural flexibility allows hibernating E. fuscus to maintain water balance and reduce energy costs across a wide range of hibernation humidities.


Assuntos
Quirópteros , Hibernação , Animais , Feminino , Umidade , Quirópteros/fisiologia , Hibernação/fisiologia , Nível de Alerta/fisiologia , Comportamento de Ingestão de Líquido , Água
2.
Viruses ; 15(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37766234

RESUMO

Ebola virus is a zoonotic pathogen with a geographic range covering diverse ecosystems that are home to many potential reservoir species. Although researchers have detected Ebola virus RNA and serological evidence of previous infection in different rodents and bats, the infectious virus has not been isolated. The field is missing critical knowledge about where the virus is maintained between outbreaks, either because the virus is rarely encountered, overlooked during sampling, and/or requires specific unknown conditions that regulate viral expression. This study assessed adipose tissue as a previously overlooked tissue capable of supporting Ebola virus infection. Adipose tissue is a dynamic endocrine organ helping to regulate and coordinate homeostasis, energy metabolism, and neuroendocrine and immune functions. Through in vitro infection of human and bat (Eptesicus fuscus) brown adipose tissue cultures using wild-type Ebola virus, this study showed high levels of viral replication for 28 days with no qualitative indicators of cytopathic effects. In addition, alterations in adipocyte metabolism following long-term infection were qualitatively observed through an increase in lipid droplet number while decreasing in size, a harbinger of lipolysis or adipocyte browning. The finding that bat and human adipocytes are susceptible to Ebola virus infection has important implications for potential tissue tropisms that have not yet been investigated. Additionally, the findings suggest how the metabolism of this tissue may play a role in pathogenesis, viral transmission, and/or zoonotic spillover events.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Ecossistema , Ebolavirus/fisiologia , Tecido Adiposo , Linhagem Celular
3.
J Proteome Res ; 22(1): 182-192, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36479878

RESUMO

White-nose syndrome (WNS)-positive little brown bats (Myotis lucifugus) may exhibit immune responses including increased cytokine and pro-inflammatory mediator gene levels. Bioactive lipid mediators (oxylipins) formed by enzymatic oxidation of polyunsaturated fatty acids can contribute to these immune responses, but have not been investigated in WNS pathophysiology. Nonenzymatic conversion of polyunsaturated fatty acids can also occur due to reactive oxygen species, however, these enantiomeric isomers will lack the same signaling properties. In this study, we performed a series of targeted lipidomic approaches on laboratory Pseudogymnoascus destructans-inoculated bats to assess changes in their splenic lipidome, including the formation of lipid mediators at early stages of WNS. Hepatic lipids previously identified were also resolved to a higher structural detail. We compared WNS-susceptible M. lucifugus to a WNS-resistant species, the big brown bat (Eptesicus fuscus). Altered splenic lipid levels were only observed in M. lucifugus. Differences in splenic free fatty acids included both omega-3 and omega-6 compounds. Increased levels of an enantiomeric monohydroxy DHA mixture were found, suggesting nonenzymatic formation. Changes in previously identified hepatic lipids were confined to omega-3 constituents. Together, these results suggest that increased oxidative stress, but not an inflammatory response, is occurring in bats at early stages of WNS that precedes fat depletion. These data have been submitted to metabolomics workbench and assigned a study number ST002304.


Assuntos
Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Lipidômica , Ácidos Graxos não Esterificados , Citocinas , Síndrome
4.
R Soc Open Sci ; 9(11): 211986, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425515

RESUMO

Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans (Pd). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd-infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro. We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host-pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases.

5.
J Comp Physiol B ; 192(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426856

RESUMO

Species with broad geographic ranges may experience varied environmental conditions throughout their range leading to local adaptation. Variation among populations reflects potential adaptability or plasticity, with implications for populations impacted by disease, climate change, and other anthropogenic influences. However, behavior may counteract divergent selection among populations. We studied intraspecific variation in hibernation physiology of Myotis lucifugus (little brown myotis) and Corynorhinus townsendii (Townsend's big-eared bat), two species of bats with large geographic ranges. We studied M. lucifugus at three hibernacula which spanned a latitudinal gradient of 1500 km, and C. townsendii from 6 hibernacula spread across 1200 km latitude and 1200 km longitude. We found no difference in torpid metabolic rate among populations of either species, nor was there a difference in the effect of ambient temperature among sites. Evaporative water loss was similar among populations of both species, with the exception of one C. townsendii pairwise site difference and one M. lucifugus site that differed from the others. We suggest the general lack of geographic variation is a consequence of behavioral microhabitat selection. As volant animals, bats can travel relatively long distances in search of preferred microclimates for hibernation. Despite dramatic macroclimate differences among populations, hibernating bats are able to find preferred microclimate conditions within their range, resulting in similar selection pressures among populations spread across wide geographic ranges.


Assuntos
Quirópteros , Hibernação , Adaptação Fisiológica , Animais , Quirópteros/fisiologia , Hibernação/fisiologia , Microclima
6.
Sci Rep ; 11(1): 20759, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675252

RESUMO

Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


Assuntos
Quirópteros/fisiologia , Hibernação , Perda Insensível de Água , Animais , Regulação da Temperatura Corporal , Metabolismo Energético , Temperatura , Água/metabolismo
7.
Sci Rep ; 11(1): 11581, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078939

RESUMO

White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Micoses/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
9.
R Soc Open Sci ; 7(9): 200770, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047038

RESUMO

Host behaviour can affect host-pathogen dynamics and theory predicts that certain individuals disproportionately infect conspecifics during an epidemic. Consistent individual differences in behaviour, or personality, could influence this variation with the most exploratory or sociable individuals most likely to spread pathogens. We quantified exploration and sociability in little brown bats (Myotis lucifugus) and then experimentally manipulated exposure to a proxy pathogen (i.e. ultraviolet (UV) fluorescent powder) to test two related hypotheses: (i) more sociable and more exploratory individuals would be more likely to transmit infections to other individuals, and (ii) more sociable and more exploratory individuals uninfected with an invading pathogen would be more likely to acquire infections. We captured 10 groups of 16 bats at a time and held each group in an outdoor flight tent equipped with roosting-boxes. We used hole-board and Y-maze tests to quantify exploration and sociability of each bat and randomly selected one individual from each group for 'infection' with non-toxic, UV fluorescent powder. Each group of 10 bats was released into the flight tent for 24 h, which represented an experimental infection trial. After 24 h, we removed bats from the trial, photographed each individual under UV light and quantified infection intensity from digital photographs. As predicted, the exploratory behaviour of the experimentally infected individual was positively correlated with infection intensity in their group-mates, while more exploratory females had higher pathogen acquisition. Our results highlight the potential influence of host personality and sex on pathogen dynamics in wildlife populations.

10.
Front Microbiol ; 11: 1776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793178

RESUMO

Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (Eptesicus fuscus), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of E. fuscus in the context of Pd has not been done. In January 2017, we captured hibernating E. fuscus, sampled their skin microbiota, and inoculated them with Pd or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) Pd infection would not disrupt the skin microbiota of Pd-resistant E. fuscus; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with Pd. Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of Pd-inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, Pseudomonas and Rhodococcus are known for antifungal potential against Pd and other fungi. Thus, in contrast to hypothesis 1, Pd infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of E. fuscus, suggesting potential associations between the bat skin microbiota and resistance to the Pd infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.

11.
J Exp Biol ; 223(Pt 15)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788270
12.
Virulence ; 11(1): 781-794, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32552222

RESUMO

Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.


Assuntos
Ascomicetos/genética , Quirópteros/microbiologia , Dermatomicoses/veterinária , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Animais , Ascomicetos/patogenicidade , Quirópteros/classificação , Dermatomicoses/microbiologia , Nariz/microbiologia , Nariz/patologia , Filogenia , Especificidade da Espécie , Asas de Animais/microbiologia , Asas de Animais/patologia
13.
J Exp Biol ; 223(Pt 6)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32054681

RESUMO

Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Torpor , Animais , Nariz
14.
PLoS One ; 14(10): e0222311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671100

RESUMO

Hibernation consists of extended durations of torpor interrupted by periodic arousals. The 'dehydration hypothesis' proposes that hibernating mammals arouse to replenish water lost through evaporation during torpor. Arousals are energetically expensive, and increased arousal frequency can alter survival throughout hibernation. Yet we lack a means to assess the effect of evaporative water loss (EWL), determined by animal physiology and hibernation microclimate, on torpor bout duration and subsequent survival. White-nose syndrome (WNS), a devastating disease impacting hibernating bats, causes increased frequency of arousals during hibernation and EWL has been hypothesized to contribute to this increased arousal frequency. WNS is caused by a fungus, which grows well in humid hibernaculum environments and damages wing tissue important for water conservation. Here, we integrated the effect of EWL on torpor expression in a hibernation energetics model, including the effects of fungal infection, to determine the link between EWL and survival. We collected field data for Myotis lucifugus, a species that experiences high mortality from WNS, to gather parameters for the model. In saturating conditions, we predicted healthy bats experience minimal mortality. Infected bats, however, suffer high fungal growth in highly saturated environments, leading to exhaustion of fat stores before spring. Our results suggest that host adaptation to humid environments leads to increased arousal frequency from infection, which drives mortality across hibernaculum conditions. Our modified hibernation model provides a tool to assess the interplay between host physiology, hibernaculum microclimate, and diseases such as WNS on winter survival.


Assuntos
Hibernação/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Torpor/fisiologia , Água/metabolismo , Animais , Nível de Alerta/fisiologia , Quirópteros/microbiologia , Quirópteros/fisiologia , Fungos/patogenicidade , Nariz/microbiologia , Nariz/fisiopatologia
15.
Physiol Biochem Zool ; 92(4): 373-380, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120325

RESUMO

Plasma metabolite concentrations can be used to understand nutritional status and foraging behavior across ecological contexts including prehibernation fattening, migration refueling, and variation in foraging habitat quality. Generally, high plasma concentrations of the ketone ß-hydroxybutyrate, a product of fat catabolism, indicate fasting, while triglycerides indicate recent feeding and fat accumulation. In recent studies of insectivorous bats, triglyceride concentration increased after feeding as expected, but ß-hydroxybutyrate also unexpectedly increased rather than decreased. An aerial-hawking foraging strategy is energetically demanding, and thus it has been hypothesized that foraging by insectivorous bats requires catabolism of stored fat. We tested this hypothesis by quantifying plasma ß-hydroxybutyrate and triglyceride concentration following feeding in little brown bats (Myotis lucifugus) that were temporarily housed in individual cages to prevent flight. We provided a fixed amount of food and collected blood samples at different intervals after feeding to produce variation in plasma metabolite concentrations. Plasma triglyceride concentration responded as predicted, but similar to previous studies and contrary to our prediction, when flight was eliminated plasma ß-hydroxybutyrate concentration responded similarly to triglyceride. Thus, it is unlikely that the unexpected plasma ß-hydroxybutyrate patterns observed in previous studies were related to flight. The mechanism underlying this unexpected pattern remains unknown, but the response has been consistent in all studies to date. Thus, plasma metabolite analysis provides an effective tool for studies of nutritional status, although more work is needed to understand why insectivorous bats respond differently than other taxa.


Assuntos
Quirópteros/sangue , Quirópteros/fisiologia , Comportamento Alimentar , Animais , Feminino , Masculino
16.
J Anim Ecol ; 88(4): 591-600, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779125

RESUMO

The persistence of populations declining from novel stressors depends, in part, on their ability to respond by trait change via evolution or plasticity. White-nose syndrome (WNS) has caused rapid declines in several North America bat species by disrupting hibernation behaviour, leading to body fat depletion and starvation. However, some populations of Myotis lucifugus now persist with WNS by unknown mechanisms. We examined whether persistence of M. lucifigus with WNS could be explained by increased body fat in early winter, which would allow bats to tolerate the increased energetic costs associated with WNS. We also investigated whether bats were escaping infection or resistant to infection as an alternative mechanism explaining persistence. We measured body fat in early and late winter during initial WNS invasion and 8 years later at six sites where bats are now persisting. We also measured infection prevalence and intensity in persisting populations. Infection prevalence was not significantly lower than observed in declining populations. However, at two sites, infection loads were lower than observed in declining populations. Body fat in early winter was significantly higher in four of the six persisting populations than during WNS invasion. Physiological models of energy use indicated that these higher fat stores could reduce WNS mortality by 58%-70%. These results suggest that differences in fat storage and infection dynamics have reduced the impacts of WNS in many populations. Increases in body fat provide a potential mechanism for management intervention to help conserve bat populations.


Assuntos
Quirópteros , Hibernação , Micoses , Tecido Adiposo , Animais , Nariz
17.
Conserv Physiol ; 7(1): coz006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805191

RESUMO

Fungi are increasingly recognised as harmful pathogens of wildlife. White-nose syndrome (WNS) is a fungal disease that has killed millions of hibernating bats in North America. High mortality has driven research to identify management strategies for the disease. Increased energy expenditure and fat depletion, as well as fluid loss, hypotonic dehydration and electrolyte depletion appear to be key aspects of WNS pathophysiology. Bats with WNS spend energy too quickly and also lose fluids containing water and electrolytes from lesions on exposed skin surfaces. During periodic arousals, bats often drink water but, in most of the WNS-affected area, food is not available during winter and, therefore, they cannot maintain energy balance or replace lost electrolytes. Therefore, providing a liquid caloric/electrolyte/nutrient supplement could be useful for treating WNS. We studied captive, hibernating little brown bats (Myotis lucifugus) to test whether providing supplemental energy and electrolytes (a 1:1 dilution of unflavoured Pedialyte) to hibernating bats could reduce severity of WNS symptoms and increase survival. Infected bats in the Pedialyte-supplemented group generally avoided the Pedialyte and preferentially drank plain water. We did not observe any differences in survival, arousal frequency or blood chemistry, but bats in the Pedialyte-supplemented group had higher fungal load and more UV fluorescence than the control group that was only provided with water. Supplemental electrolytes would be an attractive management strategy because of their low cost and logistic feasibility but our results suggest this approach would be ineffective. However, it could be useful to conduct preference experiments with multiple dilutions and/or flavours of electrolyte solution. Although they did not prefer Pedialyte in our experiment, bats in the hand readily drink it and electrolyte supplementation remains an important tool for rehabilitation of captive bats recovering from WNS and other causes of dehydration.

18.
Sci Rep ; 8(1): 15508, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341341

RESUMO

Spillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P. destructans. We took advantage of the natural persistence of Myl-CoV in bats that were experimentally inoculated with P. destructans in a previous study. Here, we show that the intestines of virus-infected bats that were also infected with fungus contained on average 60-fold more viral RNA than bats with virus alone. Increased viral RNA in the intestines correlated with the severity of fungus-related pathology. Additionally, the intestines of bats infected with fungus exhibited different expression of mitogen-activated protein kinase pathway and cytokine related transcripts, irrespective of viral presence. Levels of coronavirus antibodies were also higher in fungal-infected bats. Our results suggest that the systemic effects of WNS may down-regulate anti-viral responses in bats persistently infected with M. lucifugus coronavirus and increase the potential of virus shedding.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Quirópteros/virologia , Coronavirus/fisiologia , Micoses/veterinária , Replicação Viral/fisiologia , Animais , Anticorpos Antivirais/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Regulação da Expressão Gênica , Imunidade Inata/genética , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/virologia , Masculino , Modelos Biológicos , RNA Viral/metabolismo
19.
Physiol Behav ; 194: 356-361, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894759

RESUMO

Acute stressors such as capture and handling can elicit physiological responses in endothermic animals. One example of such a response is an increase in body temperature (Tb) commonly referred to as stress-induced hyperthermia (SIH). For species that employ torpor, typically an inactive state characterized by a controlled reduction in Tb and metabolic rate, a rapid increase in Tb could be advantageous, especially in the context of escape from predators. We quantified SIH in silver-haired bats (Lasionycteris noctivagans) because they readily enter torpor and often roost in exposed places where they could be vulnerable to predators. We tested the hypothesis that handling stress causes SIH in three separate contexts: a) during the nocturnal, active phase immediately following capture during flight, b) during the diurnal, inactive phase of normothermic bats, and c) during pronounced torpor immediately following exposure to cold ambient temperature. We used a standardized protocol during which Tb was measured (as rectal temperature) immediately upon handling and, again, several minutes later. We found that SIH occurred for inactive, normothermic bats held at a warm temperature. Surprisingly, however, handling stress caused a reduction in Tb for normothermic bats following the active, flight phase and, although in the opposite direction, this cooling rate was indistinguishable from the rate of SIH for normothermic bats during the rest phase. As expected, we observed a large change in Tb during rewarming from torpor following handling. This warming rate was greater than that previously reported in the literature for any heterothermic endotherm. Rapid rewarming by silver-haired bats could reflect their tendency to roost in relatively exposed locations that may be vulnerable to predators. This study provides new information on SIH in an under-studied group of animals and illustrates the need to evaluate the hypothesis that SIH and rewarming from torpor are influenced by predation risk and activity state.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Quirópteros , Estresse Fisiológico/fisiologia , Animais , Temperatura Baixa , Feminino , Temperatura Alta , Masculino , Fatores de Tempo , Torpor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA