Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Magn Reson Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860514

RESUMO

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.

2.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961357

RESUMO

Purpose: To evaluate methods for quantification of pulmonary ventilation with ultrashort echo time (UTE) MRI. Methods: We performed a reproducibility study, acquiring two free-breathing 1H UTE lung MRIs on the same day for six healthy volunteers. The 1) 3D + t cyclic b-spline and 2) symmetric image normalization (SyN) methods for image registration were applied after respiratory phase-resolved image reconstruction. Ventilation maps were calculated using 1) Jacobian determinant of the deformation fields minus one, termed regional ventilation, and 2) intensity percentage difference between the registered and fixed image, termed specific ventilation. We compared the reproducibility of all four method combinations via statistical analysis. Results: Split violin plots and Bland-Altman plots are shown for whole lungs and lung sections. The cyclic b-spline registration and Jacobian determinant regional ventilation quantification provide total ventilation volumes that match the segmentation tidal volume, smooth and uniform ventilation maps. The cyclic b-spline registration and specific ventilation combination yields the smallest standard deviation in the Bland-Altman plot. Conclusion: Cyclic registration performs better than SyN for respiratory phase-resolved 1H UTE MRI ventilation quantification. Regional ventilation correlates better with segmentation lung volume, while specific ventilation is more reproducible.

3.
Magn Reson Med ; 90(6): 2420-2431, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37526031

RESUMO

PURPOSE: The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized 129 Xe MRI in neonates with BPD. METHODS: Neonatal intensive care patients with established BPD were recruited (N = 9) and imaged at a corrected gestational age of median:40.7 (range:37.1, 44.4) wk using a 1.5T neonatal scanner. 2D 129 Xe ventilation and diffusion-weighted images and dissolved phase spectroscopy were acquired, alongside 1 H 3D radial UTE. 129 Xe images were acquired during a series of short apneic breath-holds (˜3 s). 1 H UTE images were acquired during tidal breathing. Ventilation defects were manually identified and qualitatively compared to lung structures on UTE. ADCs were calculated on a voxel-wise basis. The signal ratio of the 129 Xe red blood cell (RBC) and tissue membrane (M) resonances from spectroscopy was determined. RESULTS: Spiral-based 129 Xe ventilation imaging showed good image quality and sufficient sensitivity to detect mild ventilation abnormalities in patients with BPD. 129 Xe ADC values were elevated above that expected given healthy data in older children and adults (median:0.046 [range:0.041, 0.064] cm2 s-1 ); the highest value obtained from an extremely pre-term patient. 129 Xe spectroscopy revealed a low RBC/M ratio (0.14 [0.06, 0.21]). CONCLUSION: We have demonstrated initial feasibility of 129 Xe lung MRI in neonates. With further data, the technique may help guide management of infant lung diseases in the neonatal period and beyond.


Assuntos
Displasia Broncopulmonar , Adulto , Recém-Nascido , Criança , Humanos , Displasia Broncopulmonar/diagnóstico por imagem , Estudos de Viabilidade , Isótopos de Xenônio , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
5.
Magn Reson Med ; 90(2): 473-482, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36989185

RESUMO

PURPOSE: To mitigate signal variations caused by inhomogeneous RF and magnetization decay in hyperpolarized 129 Xe ventilation images using flip-angle maps generated from sequential 2D spiral ventilation images acquired in a breath-hold. Images and correction maps were compared with those obtained using conventional, 2D gradient-recalled echo. THEORY AND METHODS: Analytical expressions to predict signal intensity and uncertainty in flip-angle measurements were derived from the Bloch equations and validated by simulations and phantom experiments. Imaging in 129 Xe phantoms and human subjects (1 healthy, 1 cystic fibrosis) was performed using 2D gradient-recalled echo and spiral. For both sequences, consecutive images were acquired with the same slice position during a breath-hold (Cartesian scan time = 15 s; spiral scan time = 5 s). The ratio of these images was used to calculate flip-angle maps and correct intensity inhomogeneities in ventilation images. RESULTS: Mean measured flip angle showed excellent agreement with the applied flip angle in simulations (R2 = 0.99) for both sequences. Mean measured flip angle agreed well with the globally applied flip angle (∼15% difference) in 129 Xe phantoms and in vivo imaging using both sequences. Corrected images displayed reduced coil-dependent signal nonuniformity relative to uncorrected images. CONCLUSIONS: Flip-angle maps were obtained using sequentially acquired, 2D spiral, 129 Xe ventilation images. Signal intensity variations caused by RF-coil inhomogeneity can be corrected by acquiring sequential single-breath ventilation images in less than 5-s scan time. Thus, this method can be used to remove undesirable heterogeneity while preserving physiological effects on the signal distribution.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Respiração , Imagens de Fantasmas , Suspensão da Respiração , Isótopos de Xenônio
6.
NMR Biomed ; 36(8): e4923, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914278

RESUMO

Hyperpolarized 129 Xe MRI (Xe-MRI) is increasingly used to image the structure and function of the lungs. Because 129 Xe imaging can provide multiple contrasts (ventilation, alveolar airspace size, and gas exchange), imaging often occurs over several breath-holds, which increases the time, expense, and patient burden of scans. We propose an imaging sequence that can be used to acquire Xe-MRI gas exchange and high-quality ventilation images within a single, approximately 10 s, breath-hold. This method uses a radial one-point Dixon approach to sample dissolved 129 Xe signal, which is interleaved with a 3D spiral ("FLORET") encoding pattern for gaseous 129 Xe. Thus, ventilation images are obtained at higher nominal spatial resolution (4.2 × 4.2 × 4.2 mm3 ) compared with gas-exchange images (6.25 × 6.25 × 6.25 mm3 ), both competitive with current standards within the Xe-MRI field. Moreover, the short 10 s Xe-MRI acquisition time allows for 1 H "anatomic" images used for thoracic cavity masking to be acquired within the same breath-hold for a total scan time of about 14 s. Images were acquired using this single-breath method in 11 volunteers (N = 4 healthy, N = 7 post-acute COVID). For 11 of these participants, a separate breath-hold was used to acquire a "dedicated" ventilation scan and five had an additional "dedicated" gas exchange scan. The images acquired using the single-breath protocol were compared with those from dedicated scans using Bland-Altman analysis, intraclass correlation (ICC), structural similarity, peak signal-to-noise ratio, Dice coefficients, and average distance. Imaging markers from the single-breath protocol showed high correlation with dedicated scans (ventilation defect percent, ICC = 0.77, p = 0.01; membrane/gas, ICC = 0.97, p = 0.001; red blood cell/gas, ICC = 0.99, p < 0.001). Images showed good qualitative and quantitative regional agreement. This single-breath protocol enables the collection of essential Xe-MRI information within one breath-hold, simplifying scanning sessions and reducing costs associated with Xe-MRI.


Assuntos
COVID-19 , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Respiração , Suspensão da Respiração , Imageamento por Ressonância Magnética/métodos , Gases
7.
J Cyst Fibros ; 22(5): 926-932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36740542

RESUMO

BACKGROUND: Airway clearance therapy (ACT) with a high-frequency chest wall oscillation (HFCWO) vest is a common but time-consuming treatment. Its benefit to quality of life for cystic fibrosis (CF) patients is well established but has been questioned recently as new highly-effective modulator therapies begin to change the treatment landscape. 129Xe ventilation MRI has been shown to be very sensitive to lung obstruction in mild CF disease, making it an ideal tool to identify and quantify subtle, regional changes. METHODS: 20 CF patients (ages 20.7 ± 5.1 years) refrained from performing ACT before arriving for a single-day visit. Multiple-breath washout (MBW), spirometry, Xe MRI, and ultrashort echo-time (UTE) MRI were obtained twice-before and after patients performed ACT using their prescribed HFCWO vests (average 4.7 ± 0.5 h). UTE MRIs were scored for structural abnormalities, and standard functional metrics were obtained from MBW, spirometry, and Xe MRI-FEV1,pp, LCI2.5, and VDPN4, respectively. RESULTS: Spirometry and Xe MRI detected significant improvements in lung function post-ACT. 15/20 patients showed improvements from a baseline median of 92% FEV1,pp. Similarly, 16/20 patients showed improvements in Xe MRI from a baseline median of 15.2% VDPN4. Average individual changes were +2.6% in FEV1,pp and -1.3% in VDPN4, but without spatial correlations to easily-identifiable causative structural defects (e.g. mucus plugs or bronchiectasis) on UTE MRI. CONCLUSIONS: Lung function improved after a single instance of HFCWO-vest ACT and was detectable by spirometry and Xe MRI. The only common structural abnormalities were mucus plugs, which corresponded to ventilation defects, but ventilation defects were often present without visible abnormalities.


Assuntos
Bronquiectasia , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/terapia , Qualidade de Vida , Pulmão/diagnóstico por imagem , Testes de Função Respiratória , Imageamento por Ressonância Magnética
8.
Magn Reson Med ; 89(3): 1117-1133, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372970

RESUMO

PURPOSE: Xenon-129 (129 Xe) gas-exchange MRI is a pulmonary-imaging technique that provides quantitative metrics for lung structure and function and is often compared to pulmonary-function tests. Unlike such tests, it does not normalize to predictive values based on demographic variables such as age. Many sites have alluded to an age dependence in gas-exchange metrics; however, a procedure for normalizing metrics has not yet been introduced. THEORY: We model healthy reference values for 129 Xe gas-exchange MRI against age using generalized additive models for location, scale, and shape (GAMLSS). GAMLSS takes signal data from an aggregated heathy-reference cohort and fits a distribution with flexible median, variation, skewness, and kurtosis to predict age-dependent centiles. This approach mirrors methods by the Global Lung Function Initiative for modeling pulmonary-function test data and applies it to binning methods widely used by the 129 Xe MRI community to interpret and quantify gas-exchange data. METHODS: Ventilation, membrane-uptake, red blood cell transfer, and red blood cell:membrane gas-exchange metrics were collected on 30 healthy subjects over an age range of 5 to 68 years. A GAMLSS model was fit against age and compared against widely used linear and generalized-linear binning 129 Xe MRI analysis schemes. RESULTS: All 4 gas-exchange metrics had significant skewness, and membrane-uptake had significant kurtosis compared to a normal distribution. Age has significant impact on distribution parameters. GAMLSS-binning produced narrower bins compared to the linear and generalized-linear binning schemes and distributed signal data closer to a normal distribution. CONCLUSION: The proposed "proof-of-concept" GAMLSS-binning approach can improve diagnostic accuracy of 129 Xe gas-exchange MRI by providing a means of modeling voxel distribution data against age.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Criança , Humanos , Adolescente , Adulto Jovem , Pré-Escolar , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio , Testes de Função Respiratória , Respiração , Eritrócitos
9.
Magn Reson Med ; 89(4): 1342-1356, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36352793

RESUMO

PURPOSE: To enable efficient hyperpolarized 129 Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129 Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient-recalled echo (GRE) sequence. THEORY AND METHODS: Diffusion-weighted 129 Xe MRI (b-values = 0, 7.5, 15 s/cm2 ) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice-selective 2D-GRE (scan time = 15 s), slice-selective 2D-Spiral (4 s), and 3D-FLORET (16 s) sequences. Experimental SNRs from b-value = 0 images ( SNR 0 EX $$ SNR{0}_{EX} $$ ) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D-Spiral sequence to map flip angle and correct RF-induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. RESULTS: Diffusion-weighted images from spiral sequences displayed image quality comparable to 2D-GRE and produced sufficient SNR 0 EX $$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D-GRE, 21.2 ± 3.5 for 2D-Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole-lung means and SDs of ADC obtained via spiral were not significantly different (P > 0.54) from those obtained via 2D-GRE. Finally, 2D-Spiral images were corrected for signal decay, which resulted in a whole-lung mean ADC decrease of ˜15%, relative to uncorrected images. CONCLUSIONS: Relative to GRE, efficient spiral sequences allow 129 Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR $$ SNR $$ (2D and 3D), and three-fold faster (2D) within a single breath-hold. In turn, shortened breath-holds enable flip-angle mapping, and thus, allow RF-induced signal decay to be corrected, increasing ADC accuracy.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética
10.
J Magn Reson Imaging ; 56(4): 1207-1219, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35244302

RESUMO

BACKGROUND: 129 Xe gas-transfer MRI provides regional measures of pulmonary gas exchange in adults and separates xenon in interstitial lung tissue/plasma (barrier) from xenon in red blood cells (RBCs). The technique has yet to be demonstrated in pediatric populations or conditions. PURPOSE/HYPOTHESIS: To perform an exploratory analysis of 129 Xe gas-transfer MRI in children. STUDY TYPE: Prospective. POPULATION: Seventy-seven human volunteers (38 males, age = 17.7 ± 15.1 years, range 5-68 years, 16 healthy). Four pediatric disease cohorts. FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional-radial one-point Dixon Fast Field Echo (FFE) Ultrashort Echo Time (UTE). ASSESSMENT: Breath hold compliance was assessed by quantitative signal-to-noise and dynamic metrics. Whole-lung means and standard deviations were extracted from gas-transfer maps. Gas-transfer metrics were investigated with respect to age and lung disease. Clinical pulmonary function tests were retrospectively acquired for reference lung disease severity. STATISTICAL TESTS: Wilcoxon rank-sum tests to compare age and disease cohorts, Wilcoxon signed-rank tests to compare pre- and post-breath hold vitals, Pearson correlations between age and gas-transfer metrics, and limits of normal with a binomial exact test to compare fraction of subjects with abnormal gas-transfer. P ≤ 0.05 was considered significant. RESULTS: Eighty percentage of pediatric subjects successfully completed 129 Xe gas-transfer MRI. Gas-transfer parameters differed between healthy children and adults, including ventilation (0.75 and 0.67) and RBC:barrier ratio (0.31 and 0.46) which also correlated with age (ρ = -0.76, 0.57, respectively). Bone marrow transplant subjects had impaired ventilation (90% of reference) and increased dissolved 129 Xe standard deviation (242%). Bronchopulmonary dysplasia subjects had decreased barrier-uptake (69%). Cystic fibrosis subjects had impaired ventilation (91%) and increased RBC-transfer (146%). Lastly, childhood interstitial lung disease subjects had increased ventilation heterogeneity (113%). Limits of normal provided detection of abnormalities in additional gas-transfer parameters. DATA CONCLUSION: Pediatric 129 Xe gas-transfer MRI was adequately successful and gas-transfer metrics correlated with age. Exploratory analysis revealed abnormalities in a variety of pediatric obstructive and restrictive lung diseases. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Pneumopatias , Isótopos de Xenônio , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Viabilidade , Humanos , Imageamento Tridimensional/métodos , Recém-Nascido , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Xenônio , Adulto Jovem
11.
Acad Radiol ; 29 Suppl 2: S145-S155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34393064

RESUMO

RATIONALE: There is no agreed upon method for quantifying ventilation defect percentage (VDP) with high sensitivity and specificity from hyperpolarized (HP) gas ventilation MR images in multiple pulmonary diseases for both pediatrics and adults, yet identifying such methods will be necessary for future multi-site trials. Most HP gas MRI ventilation research focuses on a specific pulmonary disease and utilizes one quantification scheme for determining VDP. Here we sought to determine the potential of different methods for quantifying VDP from HP 129Xe images in multiple pulmonary diseases through comparison of the most utilized quantification schemes: linear binning and thresholding. MATERIALS AND METHODS: HP 129Xe MRI was performed in a total of 176 subjects (125 pediatrics and 51 adults, age 20.98±16.48 years) who were either healthy controls (n = 23) or clinically diagnosed with cystic fibrosis (CF) (n = 37), lymphangioleiomyomatosis (LAM) (n = 29), asthma (n = 22), systemic juvenile idiopathic arthritis (sJIA) (n = 11), interstitial lung disease (ILD) (n = 7), or were bone marrow transplant (BMT) recipients (n = 47). HP 129Xe ventilation images were acquired during a ≤16 second breath-hold using a 2D multi-slice gradient echo sequence on a 3T Philips scanner (TR/TE 8.0/4.0ms, FA 10-12°, FOV 300 × 300mm, voxel size≈3 × 3 × 15mm). Images were analyzed using 5 different methods to quantify VDPs: linear binning (histogram normalization with binning into 6 clusters) following either linear or a variant of a nonparametric nonuniform intensity normalization algorithm (N4ITK) bias-field correction, thresholding ≤60% of the mean signal intensity with linear bias-field correction, and thresholding ≤60% and ≤75% of the mean signal intensity following N4ITK bias-field correction. Spirometry was successfully obtained in 84% of subjects. RESULTS: All quantification schemes were able to label visually identifiable ventilation defects in similar regions within all subjects. The VDPs of control subjects were significantly lower (p<0.05) compared to BMT, CF, LAM, and ILD subjects for most of the quantification methods. No one quantification scheme was better able to differentiate individual disease groups from the control group. Advanced statistical modeling of the VDP quantification schemes revealed that in comparing controls to the combined disease group, N4ITK bias-field corrected 60% thresholding had the highest predictive efficacy, sensitivity, and specificity at the VDP cut-point of 2.3%. However, compared to the thresholding quantification schemes, linear binning was able to capture and label subtle low-ventilation regions in subjects with milder obstruction, such as subjects with asthma. CONCLUSION: The difference in VDP between healthy controls and patients varied between the different disease states for all quantification methods. Although N4ITK bias-field corrected 60% thresholding was superior in separating the combined diseased group from controls, linear binning is able to better label low-ventilation regions unlike the current, 60% thresholding scheme. For future clinical trials, a consensus will need to be reached on which VDP scheme to utilize, as there are subtle advantages for each for specific disease.


Assuntos
Asma , Xenônio , Adolescente , Adulto , Asma/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ventilação Pulmonar , Isótopos de Xenônio , Adulto Jovem
12.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34266943

RESUMO

BACKGROUND: Chest computed tomography (CT) remains the imaging standard for demonstrating cystic fibrosis (CF) airway structural disease in vivo. However, visual scoring systems as an outcome measure are time consuming, require training and lack high reproducibility. Our objective was to validate a fully automated artificial intelligence (AI)-driven scoring system of CF lung disease severity. METHODS: Data were retrospectively collected in three CF reference centres, between 2008 and 2020, in 184 patients aged 4-54 years. An algorithm using three 2D convolutional neural networks was trained with 78 patients' CT scans (23 530 CT slices) for the semantic labelling of bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus and collapse/consolidation. 36 patients' CT scans (11 435 CT slices) were used for testing versus ground-truth labels. The method's clinical validity was assessed in an independent group of 70 patients with or without lumacaftor/ivacaftor treatment (n=10 and n=60, respectively) with repeat examinations. Similarity and reproducibility were assessed using the Dice coefficient, correlations using the Spearman test, and paired comparisons using the Wilcoxon rank test. RESULTS: The overall pixelwise similarity of AI-driven versus ground-truth labels was good (Dice 0.71). All AI-driven volumetric quantifications had moderate to very good correlations to a visual imaging scoring (p<0.001) and fair to good correlations to forced expiratory volume in 1 s % predicted at pulmonary function tests (p<0.001). Significant decreases in peribronchial thickening (p=0.005), bronchial mucus (p=0.005) and bronchiolar mucus (p=0.007) volumes were measured in patients with lumacaftor/ivacaftor. Conversely, bronchiectasis (p=0.002) and peribronchial thickening (p=0.008) volumes increased in patients without lumacaftor/ivacaftor. The reproducibility was almost perfect (Dice >0.99). CONCLUSION: AI allows fully automated volumetric quantification of CF-related modifications over an entire lung. The novel scoring system could provide a robust disease outcome in the era of effective CF transmembrane conductance regulator modulator therapy.


Assuntos
Inteligência Artificial , Regulador de Condutância Transmembrana em Fibrose Cística , Adolescente , Adulto , Aminopiridinas/uso terapêutico , Criança , Pré-Escolar , Humanos , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
13.
NMR Biomed ; 35(3): e4639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729838

RESUMO

RATIONALE: Hyperpolarized (HP) 129 Xe-MRI provides non-invasive methods to quantify lung function and structure, with the 129 Xe apparent diffusion coefficient (ADC) being a well validated measure of alveolar airspace size. However, the experimental factors that impact the precision and accuracy of HP 129 Xe ADC measurements have not been rigorously investigated. Here, we introduce an analytical model to predict the experimental uncertainty of 129 Xe ADC estimates. Additionally, we report ADC dependence on age in healthy pediatric volunteers. METHODS: An analytical expression for ADC uncertainty was derived from the Stejskal-Tanner equation and simplified Bloch equations appropriate for HP media. Parameters in the model were maximum b-value (bmax ), number of b-values (Nb ), number of phase encoding lines (Nph ), flip angle and the ADC itself. This model was validated by simulations and phantom experiments, and five fitting methods for calculating ADC were investigated. To examine the lower range for 129 Xe ADC, 32 healthy subjects (age 6-40 years) underwent diffusion-weighted 129 Xe MRI. RESULTS: The analytical model provides a lower bound on ADC uncertainty and predicts that decreased signal-to-noise ratio yields increases in relative uncertainty (ϵADC) . As such, experimental parameters that impact non-equilibrium 129 Xe magnetization necessarily impact the resulting ϵADC . The values of diffusion encoding parameters (Nb and bmax ) that minimize ϵADC strongly depend on the underlying ADC value, resulting in a global minimum for ϵADC . Bayesian fitting outperformed other methods (error < 5%) for estimating ADC. The whole-lung mean 129 Xe ADC of healthy subjects increased with age at a rate of 1.75 × 10-4  cm2 /s/yr (p = 0.001). CONCLUSIONS: HP 129 Xe diffusion MRI can be improved by minimizing the uncertainty of ADC measurements via uncertainty propagation. Doing so will improve experimental accuracy when measuring lung microstructure in vivo and should allow improved monitoring of regional disease progression and assessment of therapy response in a range of lung diseases.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio , Adolescente , Adulto , Fatores Etários , Criança , Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Razão Sinal-Ruído , Incerteza , Adulto Jovem
14.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478584

RESUMO

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Assuntos
Pulmão , Isótopos de Xenônio , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Multicêntricos como Assunto , Ventilação Pulmonar , Respiração
16.
PLoS One ; 16(8): e0256460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411195

RESUMO

Computational fluid dynamics (CFD) simulations of respiratory airflow have the potential to change the clinical assessment of regional airway function in health and disease, in pulmonary medicine and otolaryngology. For example, in diseases where multiple sites of airway obstruction occur, such as obstructive sleep apnea (OSA), CFD simulations can identify which sites of obstruction contribute most to airway resistance and may therefore be candidate sites for airway surgery. The main barrier to clinical uptake of respiratory CFD to date has been the difficulty in validating CFD results against a clinical gold standard. Invasive instrumentation of the upper airway to measure respiratory airflow velocity or pressure can disrupt the airflow and alter the subject's natural breathing patterns. Therefore, in this study, we instead propose phase contrast (PC) velocimetry magnetic resonance imaging (MRI) of inhaled hyperpolarized 129Xe gas as a non-invasive reference to which airflow velocities calculated via CFD can be compared. To that end, we performed subject-specific CFD simulations in airway models derived from 1H MRI, and using respiratory flowrate measurements acquired synchronously with MRI. Airflow velocity vectors calculated by CFD simulations were then qualitatively and quantitatively compared to velocity maps derived from PC velocimetry MRI of inhaled hyperpolarized 129Xe gas. The results show both techniques produce similar spatial distributions of high velocity regions in the anterior-posterior and foot-head directions, indicating good qualitative agreement. Statistically significant correlations and low Bland-Altman bias between the local velocity values produced by the two techniques indicates quantitative agreement. This preliminary in vivo comparison of respiratory airway CFD and PC MRI of hyperpolarized 129Xe gas demonstrates the feasibility of PC MRI as a technique to validate respiratory CFD and forms the basis for further comprehensive validation studies. This study is therefore a first step in the pathway towards clinical adoption of respiratory CFD.


Assuntos
Isótopos de Xenônio , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Traqueia
17.
J Magn Reson ; 327: 106980, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940541

RESUMO

The physical phenomena governing hyperpolarization through optical pumping of conduction electrons continue to be explored in multiple semiconductor systems. One early finding has been the asymmetry between the optically pumped nuclear magnetic resonance (OPNMR) signals when generated by different circular polarizations (i.e., light helicities). Because these resonances are asymmetric, the midpoint between the signals prepared with each of the two circular polarizations is either a positive or negative value, termed an "offset" that is representative of an optical Overhauser enhancement. Both negative offsets (in GaAs) and positive offsets (in CdTe) have been observed. The origins of these offsets in semiconductors are believed to arise from thermalized electrons; however, to the best of our knowledge, no study has systematically tested this hypothesis. To that end, we have adopted two configurations for OPNMR experiments-one in which the Poynting vector of the laser light and magnetic field are parallel, and one in which they are antiparallel, while other experimental conditions are kept the same. We find that the OPNMR signal response to a fixed helicity of light depends on the experimental configuration, and this configuration needs to be accounted for in order to properly describe the OPNMR results. Further, studying the offsets as a function of field strength shows that the optical Overhauser enhancement (the offset) increases in magnitude with field strength. Finally, by describing all angular momentum and phasing conventions unambiguously, we are able to determine that the absorptively-phased appearance of 113Cd (and 125Te) OPNMR in CdTe is a consequence of the sign of the nuclear gyromagnetic ratios for these isotopes.

18.
Magn Reson Med ; 86(2): 907-915, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33665905

RESUMO

PURPOSE: Hyperpolarized xenon (129 Xe) gas-transfer imaging allows different components of pulmonary gas transfer-alveolar air space, lung interstitium/blood plasma (barrier), and red blood cells (RBCs)-to be assessed separately in a single breath. However, quantitative analysis is challenging because dissolved-phase 129 Xe images are often contaminated by off-resonant gas-phase signal generated via imperfectly selective excitation. Although previous methods required additional data for gas-phase removal, the method reported here requires no/minimal sequence modifications/data acquisitions, allowing many previously acquired images to be corrected retroactively. METHODS: 129 Xe imaging was implemented at 3.0T via an interleaved three-dimensional radial acquisition of the gaseous and dissolved phases (using one-point Dixon reconstruction for the dissolved phase) in 46 human subjects and a phantom. Gas-phase contamination (9.5% ± 4.8%) was removed from gas-transfer data using a modified gas-phase image. The signal-to-noise ratio (SNR) and signal distributions were compared before and after contamination removal. Additionally, theoretical gaseous contaminations were simulated at different magnetic field strengths for comparison. RESULTS: Gas-phase contamination at 3.0T was more diffuse and located predominantly outside the lungs, relative to simulated 1.5T contamination caused by the larger frequency offset. Phantom experiments illustrated a 91% removal efficiency. In human subjects, contamination removal produced significant changes in dissolved signal SNR (+7.8%), mean (-1.4%), and standard deviation (-2.3%) despite low contamination. Repeat measurements showed reduced variance (dissolved mean, -1.0%; standard deviation, -8.4%). CONCLUSION: Off-resonance gas-phase contamination can be removed robustly with no/minimal sequence modifications. Contamination removal permits more accurate quantification, reduces radiofrequency stringency requirements, and increases data consistency, providing improved sensitivity needed for multicenter trials.


Assuntos
Artefatos , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Xenônio
19.
Chest ; 159(6): 2205-2217, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33345950

RESUMO

To assess airway and lung parenchymal damage noninvasively in cystic fibrosis (CF), chest MRI has been historically out of the scope of routine clinical imaging because of technical difficulties such as low proton density and respiratory and cardiac motion. However, technological breakthroughs have emerged that dramatically improve lung MRI quality (including signal-to-noise ratio, resolution, speed, and contrast). At the same time, novel treatments have changed the landscape of CF clinical care. In this contemporary context, there is now consensus that lung MRI can be used clinically to assess CF in a radiation-free manner and to enable quantification of lung disease severity. MRI can now achieve three-dimensional, high-resolution morphologic imaging, and beyond this morphologic information, MRI may offer the ability to sensitively differentiate active inflammation vs scarring tissue. MRI could also characterize various forms of inflammation for early guidance of treatment. Moreover, functional information from MRI can be used to assess regional, small-airway disease with sensitivity to detect small changes even in patients with mild CF. Finally, automated quantification methods have emerged to support conventional visual analyses for more objective and reproducible assessment of disease severity. This article aims to review the most recent developments of lung MRI, with a focus on practical application and clinical value in CF, and the perspectives on how these modern techniques may converge and impact patient care soon.


Assuntos
Fibrose Cística/diagnóstico , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Resultado do Tratamento
20.
J Allergy Clin Immunol ; 147(6): 2146-2153.e1, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33227317

RESUMO

BACKGROUND: Measurement of regional lung ventilation with hyperpolarized 129Xe magnetic resonance imaging (129Xe MRI) in pediatric asthma is poised to advance our understanding of disease mechanisms and pathophysiology in a disorder with diverse clinical phenotypes. 129Xe MRI has not been investigated in a pediatric asthma cohort. OBJECTIVE: We hypothesized that 129Xe MRI is feasible and can demonstrate ventilation defects that relate to and predict clinical severity in a pediatric asthma cohort. METHODS: Thirty-seven children (13 with severe asthma, 8 with mild/moderate asthma, 16 age-matched healthy controls) aged 6 to 17 years old were imaged with 129Xe MRI. Ventilation defect percentage (VDP) and image reader score were calculated and compared with clinical measures at baseline and at follow-up. RESULTS: Children with asthma had higher VDP (P = .002) and number of defects per image slice (defects/slice) (P = .0001) than children without asthma. Children with clinically severe asthma had significantly higher VDP and number of defects/slice than healthy controls. Children with asthma who had a higher number of defects/slice had a higher rate of health care utilization (r = 0.48; P = .03) and oral corticosteroid use (r = 0.43; P = .05) at baseline. Receiver-operating characteristic analysis demonstrated that the VDP and number of defects/slice were predictive of increased health care utilization, asthma, and severe asthma. VDP correlated with FEV1 (r = -0.35; P = .04) and FEV1/forced vital capacity ratio (r = -0.41; P = .01). CONCLUSIONS: 129Xe MRI correlates with asthma severity, health care utilization, and oral corticosteroid use. Because delineation of clinical severity is often difficult in children, 129Xe MRI may be an important biomarker for severity, with potential to identify children at higher risk for exacerbations and improve outcomes.


Assuntos
Asma/diagnóstico , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio , Adolescente , Asma/terapia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Curva ROC , Testes de Função Respiratória , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA