Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS One ; 18(4): e0279323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058505

RESUMO

BACKGROUND: The differentiation of minimal-fat-or low-fat-angiomyolipomas from other renal lesions is clinically challenging in conventional computed tomography. In this work, we have assessed the potential of grating-based x-ray phase-contrast computed tomography (GBPC-CT) for visualization and quantitative differentiation of minimal-fat angiomyolipomas (mfAMLs) and oncocytomas from renal cell carcinomas (RCCs) on ex vivo renal samples. MATERIALS AND METHODS: Laboratory GBPC-CT was performed at 40 kVp on 28 ex vivo kidney specimens including five angiomyolipomas with three minimal-fat (mfAMLs) and two high-fat (hfAMLs) subtypes as well as three oncocytomas and 20 RCCs with eight clear cell (ccRCCs), seven papillary (pRCCs) and five chromophobe RCC (chrRCC) subtypes. Quantitative values of conventional Hounsfield units (HU) and phase-contrast Hounsfield units (HUp) were determined and histogram analysis was performed on GBPC-CT and grating-based attenuation-contrast computed tomography (GBAC-CT) slices for each specimen. For comparison, the same specimens were imaged at a 3T magnetic resonance imaging (MRI) scanner. RESULTS: We have successfully matched GBPC-CT images with clinical MRI and histology, as GBPC-CT presented with increased soft tissue contrast compared to absorption-based images. GBPC-CT images revealed a qualitative and quantitative difference between mfAML samples (58±4 HUp) and oncocytomas (44±10 HUp, p = 0.057) and RCCs (ccRCCs: 40±12 HUp, p = 0.012; pRCCs: 43±9 HUp, p = 0.017; chrRCCs: 40±7 HUp, p = 0.057) in contrast to corresponding laboratory attenuation-contrast CT and clinical MRI, although not all differences were statistically significant. Due to the heterogeneity and lower signal of oncocytomas, quantitative differentiation of the samples based on HUp or in combination with HUs was not possible. CONCLUSIONS: GBPC-CT allows quantitative differentiation of minimal-fat angiomyolipomas from pRCCs and ccRCCs in contrast to absorption-based imaging and clinical MRI.


Assuntos
Adenoma Oxífilo , Angiomiolipoma , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Angiomiolipoma/diagnóstico por imagem , Angiomiolipoma/patologia , Raios X , Tomografia Computadorizada por Raios X/métodos , Adenoma Oxífilo/diagnóstico por imagem , Diagnóstico Diferencial , Estudos Retrospectivos
2.
Sci Rep ; 12(1): 16150, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168033

RESUMO

Wood decomposition is a central process contributing to global carbon and nutrient cycling. Quantifying the role of the major biotic agents of wood decomposition, i.e. insects and fungi, is thus important for a better understanding of this process. Methods to quantify wood decomposition, such as dry mass loss, suffer from several shortcomings, such as destructive sampling or subsampling. We developed and tested a new approach based on computed tomography (CT) scanning and semi-automatic image analysis of logs from a field experiment with manipulated beetle communities. We quantified the volume of beetle tunnels in wood and bark and the relative wood volume showing signs of fungal decay and compared both measures to classic approaches. The volume of beetle tunnels was correlated with dry mass loss and clearly reflected the differences between beetle functional groups. Fungal decay was identified with high accuracy and strongly correlated with ergosterol content. Our data show that this is a powerful approach to quantify wood decomposition by insects and fungi. In contrast to other methods, it is non-destructive, covers entire deadwood objects and provides spatially explicit information opening a wide range of research options. For the development of general models, we urge researchers to publish training data.


Assuntos
Besouros , Madeira , Animais , Carbono , Ergosterol , Fungos , Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Madeira/microbiologia
3.
Phys Med Biol ; 65(18): 185011, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32460250

RESUMO

Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Humanos , Síncrotrons
4.
J Clin Pathol ; 73(8): 483-487, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31941652

RESUMO

AIMS: To correlate signal intensities in grating-based phase-contrast CT (PCCT) images obtained at a synchrotron light source and a conventional X-ray source with tissue components in human liver cirrhosis and hepatocellular carcinoma (HCC) specimen. METHODS: Study approval was obtained by the institutional review board. Human specimen of liver cirrhosis and HCC were imaged at experimental grating-based PCCT setups using either a synchrotron radiation source or a conventional X-ray tube. Tissue samples were sectioned and processed for H&E and Elastica van Gieson staining. PCCT and histological images were manually correlated. Depending on morphology and staining characteristics tissue components like fibrosis, HCC, inflammation, connective tissue and necrosis were differentiated and visually correlated with signal intensity in PCCT images using a 5-point Likert scale with normal liver parenchyma as a reference. RESULTS: Grating-based PCCT images of human cirrhotic liver and HCC specimen showed high soft-tissue contrast allowing correlation with histopathological sections. Signal intensities were similar in both setups independent of the nature of the radiation source. Connective tissue and areas of haemorrhage displayed the highest signal intensities, fibrotic liver tissue the lowest. CONCLUSIONS: Grating-based PCCT provides comparable results for the characterisation of human specimen of liver cirrhosis and HCC using either a synchrotron light source or a conventional X-ray tube. Due to its high soft-tissue contrast and its applicability to conventional X-ray tubes grating-based PCCT holds potential for preclinical research and virtual histology applications.


Assuntos
Carcinoma Hepatocelular/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Detecção Precoce de Câncer , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Síncrotrons , Tomografia Computadorizada por Raios X/métodos
5.
PLoS One ; 14(2): e0212106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763375

RESUMO

OBJECTIVE: Aim of this study was, to demonstrate the feasibility of high-resolution grating-based X-ray phase-contrast computed tomography (PCCT) for quantitative assessment of cartilage. MATERIALS AND METHODS: In an experimental setup, 12 osteochondral samples were harvested from n = 6 bovine knees (n = 2 each). From each knee, one cartilage sample was degraded using 2.5% Trypsin. In addition to PCCT and biomechanical cartilage stiffness measurements, 3T and 7T MRI was performed including MSME SE T2 and ME GE T2* mapping sequences for relaxationtime measurements. Paired t-tests and receiver operating characteristics (ROC) curves were used for statistical analyses. RESULTS: PCCT provided high-resolution images for improved morphological cartilage evaluation as compared to 3T and 7T MRI. Quantitative analyses revealed significant differences between the superficial and the deep cartilage layer for T2 mapping as well as for PCCT (P<0.05). No significant difference was detected for PCCT between healthy and degraded samples (P>0.05). MRI and stiffness measurements showed significant differences between healthy and degraded osteochondral samples. Accuracy in the prediction of cartilage degradation was excellent for MRI and biomechanical analyses. CONCLUSION: In conclusion, high-resolution grating-based X-ray PCCT cartilage imaging is feasible. In addition to MRI and biomechanical analyses it provides complementary, water content independent, information for improved morphological and quantitative characterization of articular cartilage ultrastructure.


Assuntos
Cartilagem/diagnóstico por imagem , Cartilagem/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Animais , Cartilagem/citologia , Bovinos , Estudos de Viabilidade , Membro Posterior/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação
6.
PLoS One ; 14(1): e0210291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625220

RESUMO

BACKGROUND: The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to the discontinuous growth and lack of microcalcifications. Specimen radiography has been established to reduce the rate of re-excision. However, the predictive value for margin assessment with conventional specimen radiography for DCIS is low. In this study we assessed the potential of grating-based phase-contrast computed tomography (GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing samples. MATERIALS AND METHODS: GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manually matched with corresponding histological slices as the standard of reference. RESULTS: Matching of CT images and histology was successful. GBPC-CT showed an improved soft tissue contrast compared to absorption-based images revealing more histological details in the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to areas of dilated bright ducts around the tumor. CONCLUSIONS: GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the imaging of breast tissue samples compared to absorption-based imaging, allows the identification of diagnostically relevant tissue details, and provides full three-dimensional assessment of sample margins.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/cirurgia , Feminino , Humanos , Técnicas In Vitro , Mamografia/métodos , Microscopia de Contraste de Fase/métodos , Estudos Prospectivos
7.
Sci Rep ; 8(1): 15884, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367132

RESUMO

The conventional form of computed tomography using X-ray attenuation without any contrast agents is of limited use for the characterization of soft tissue in many fields of medical and biological studies. Grating-based phase-contrast computed tomography (gbPC-CT) is a promising alternative imaging method solving the low soft tissue contrast without the need of any contrast agent. While highly sensitive measurements are possible using conventional X-ray sources the spatial resolution does often not fulfill the requirements for specific imaging tasks, such as visualization of pathologies. The focus of this study is the increase in spatial resolution without loss of sensitivity. To overcome this limitation a super-resolution reconstruction based on sub-pixel shifts involving a deconvolution of the image data during each iteration is applied. In our study we achieve an effective pixel size of 28 µm with a conventional rotating anode tube and a photon-counting detector. We also demonstrate that the method can upgrade existing setups to measure tomographies with higher resolution. The results show the increase in resolution at high sensitivity and with the ability to make quantitative measurements. The combination of sparse sampling and statistical iterative reconstruction may be used to reduce the total measurement time. In conclusion, we present high-quality and high-resolution tomographic images of biological samples to demonstrate the experimental feasibility of super-resolution reconstruction.

8.
Opt Express ; 26(12): 15153-15166, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114766

RESUMO

The demand for quantitative medical imaging is increasing in the ongoing digitalization. Conventional computed tomography (CT) is energy-dependent and therefore of limited comparability. In contrast, dual-energy CT (DECT) allows for the determination of absolute image contrast quantities, namely the electron density and the effective atomic number, and is already established in clinical radiology and radiation therapy. Grating-based phase-contrast computed tomography (GBPC-CT) is an experimental X-ray technique that also allows for the measurement of the electron density and the effective atomic number. However, the determination of both quantities is challenging when dealing with polychromatic GBPC-CT setups. In this paper, we present how to calculate the effective atomic numbers with a polychromatic, laboratory GBPC-CT setup operating between 35 and 50\,kVp. First, we investigated the accuracy of the measurement of the attenuation coefficients and electron densities. For this, we performed a calibration using the concept of effective energy. With the reliable experimental quantitative values, we were able to evaluate the effective atomic numbers of the investigated materials using a method previously shown with monochromatic X-ray radiation. In detail, we first calculated the ratio of the electron density and attenuation coefficient, which were experimentally determined with our polychromatic GBPC-CT setup. Second, we compared this ratio with tabulated total attenuation cross sections from literature values to determine the effective atomic numbers. Thus, we were able to calculate two physical absolute quantities -- the electron density and effective atomic number -- that are in general independent of the specific experimental conditions like the X-ray beam spectrum or the setup design.

9.
Sci Rep ; 8(1): 6608, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700372

RESUMO

Grating-based phase-contrast computed tomography (GBPC-CT) enables increased soft tissue differentiation, but often suffers from streak artifacts when performing high-sensitivity GBPC-CT of biomedical samples. Current GBPC-CT setups consist of one-dimensional gratings and hence allow to measure only the differential phase-contrast (DPC) signal perpendicular to the direction of the grating lines. Having access to the full two-dimensional DPC signal can strongly reduce streak artefacts showing up as characteristic horizontal lines in the reconstructed images. GBPC-CT with gratings tilted by 45° around the optical axis, combining opposed projections, and reconstructing with filtered backprojection is one method to retrieve the full three-dimensional DPC signal. This approach improves the quality of the tomographic data as already demonstrated at a synchrotron facility. However, additional processing and interpolation is necessary, and the approach fails when dealing with cone-beam geometry setups. In this work, we employ the tilted grating configuration with a laboratory GBPC-CT setup with cone-beam geometry and use statistical iterative reconstruction (SIR) with a forward model accounting for diagonal grating alignment. Our results show a strong reduction of streak artefacts and significant increase in image quality. In contrast to the prior approach our proposed method can be used in a laboratory environment due to its cone-beam compatibility.

10.
Invest Radiol ; 53(1): 26-34, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28846552

RESUMO

OBJECTIVES: Grating-based phase-contrast computed tomography (gb-PCCT) relies on x-ray refraction instead of absorption to generate high-contrast images in biological soft tissue. The aim of this study was to evaluate the potential of gb-PCCT for the depiction of structural changes in heart disease. MATERIALS AND METHODS: Four human heart specimens from patients with hypertensive disease, ischemic disease, dilated heart disease, and cardiac lipomatosis were examined. The gb-PCCT setup consisted of an x-ray tube (40 kV, 70 mA), grating-interferometer, and detector, and allowed simultaneous acquisition of phase- and absorption-contrast data. With histopathology as the standard of reference, myocardium (MC), fibrotic scar (FS), interstitial fibrosis (IF), and fatty tissue (FT) were visually and quantitatively evaluated. Systematic differences in absorption- and phase-contrast Hounsfield units (HUabs and HUp) were assessed. RESULTS: Thirteen corresponding cross-sections were included, and MC, FS, IF, and FT were found in 13 (100%), 4 (30.8%), 7 (53.8%), and 13 (100%) cross-sections, respectively. Mean HUp/HUabs were 52.5/54.1, 86.6/69.7, 62.4/62.3, and -38.6/-258.9 for MC, FS, IF, and FT, respectively. An overlap in HUabs was observed for MC and IF (P = 0.84) but not for HUp (P < 0.01). Contrast-to-noise ratios were significantly higher in phase- than in absorption-contrast for MC/FT (35.4 vs 7.8; P < 0.01) and for MC/FS (12.3 vs 0.2; P < 0.01). CONCLUSIONS: Given its superior soft tissue contrast, gb-PCCT is able to depict structural changes in different cardiomyopathies, which can currently not be obtained by x-ray absorption-based imaging methods. If current technical limitations can be overcome, gb-PCCT may evolve as a powerful tool for the anatomical assessment of cardiomyopathy.


Assuntos
Meios de Contraste , Cardiopatias/diagnóstico por imagem , Coração/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Avaliação como Assunto , Humanos , Reprodutibilidade dos Testes
11.
PLoS One ; 12(9): e0184217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877253

RESUMO

Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Estatística como Assunto
12.
Eur J Radiol ; 94: 38-45, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28941758

RESUMO

OBJECTIVES: Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. METHODS: Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. RESULTS: Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. CONCLUSIONS: Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Autopsia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Doença da Artéria Coronariana/patologia , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes
13.
Sci Rep ; 7: 45400, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361951

RESUMO

Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Tomografia Computadorizada por Raios X/métodos , Antígenos de Neoplasias , Humanos , Proteínas Quinases Ativadas por Mitógeno , Sensibilidade e Especificidade
14.
Invest Radiol ; 52(4): 223-231, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28079701

RESUMO

OBJECTIVES: The aim of this study was to determine the diagnostic accuracy of grating-based phase-contrast computed tomography (gb-PCCT) to classify and quantify coronary vessel characteristics in comparison with optical coherence tomography (OCT) and histopathology in an ex vivo setting. MATERIALS AND METHODS: After excision from 5 heart specimens, 15 human coronary arteries underwent gb-PCCT examination using an experimental imaging setup consisting of a rotating molybdenum anode x-ray tube, a Talbot-Lau grating interferometer, and a single photon counting detector. Subsequently, all vessels were imaged by OCT and histopathologically processed. Optical coherence tomography, gb-PCCT, and histopathology images were manually matched using anatomical landmarks. Optical coherence tomography and gb-PCCT were reviewed by 2 independent observers blinded to histopathology. Vessel, lumen, and plaque area were measured, and plaque characteristics (lipid rich, calcified, and fibrous) were determined for each section. Measures of diagnostic accuracy were derived, applying histopathology as the standard of reference. RESULTS: Of a total of 286 assessed cross sections, 241 corresponding sections were included in the statistical analysis. Quantitative measures derived from gb-PCCT were significantly higher than from OCT (P < 0.001) and were strongly correlated with histopathology (Pearson r ≥0.85 for gb-PCCT and ≥0.61 for OCT, respectively). Results of Bland-Altman analysis demonstrated smaller mean differences between OCT and histopathology than for gb-PCCT and histopathology. Limits of agreement were narrower for gb-PCCT with regard to lumen area, for OCT with regard to plaque area, and were comparable with regard to vessel area. Based on histopathology, 228/241 (94.6%) sections were classified as fibrous, calcified, or lipid rich. The diagnostic accuracy of gb-PCCT was excellent for the detection of all plaque components (sensitivity, ≥0.95; specificity, ≥0.94), whereas the results for OCT showed sensitivities of ≥0.73 and specificities of ≥0.66. CONCLUSIONS: In this ex vivo setting, gb-PCCT provides excellent results in the assessment of coronary atherosclerotic plaque characteristics and vessel dimensions in comparison to OCT and histopathology. Thus, the technique may serve as adjunct nondestructive modality for advanced plaque characterization in an experimental setting.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Tomografia Computadorizada por Raios X/métodos , Vasos Coronários/diagnóstico por imagem , Dissecação , Estudos de Viabilidade , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Eur J Radiol ; 86: 99-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28027773

RESUMO

PURPOSE: X-ray phase-contrast imaging (PCI) provides additional information beyond absorption characteristics by detecting the phase shift of the X-ray beam passing through material. The grating-based system works with standard polychromatic X-ray sources, promising a possible clinical implementation. PCI has been shown to provide additional information in soft-tissue samples. The aim of this study was to determine if ex vivo quantitative phase-contrast computed tomography (PCCT) may differentiate between pathologic fluid collections. MATERIALS AND METHODS: PCCT was performed with the grating interferometry method. A protein serial dilution, human blood samples and 17 clinical samples of pathologic fluid retentions were imaged and correlated with clinical chemistry measurements. Conventional and phase-contrast tomography images were reconstructed. Phase-contrast Hounsfield Units (HUp) were used for quantitative analysis analogously to conventional HU. The imaging was analyzed using overall means, ROI values as well as whole-volume-histograms and vertical gradients. Contrast to noise ratios were calculated between different probes and between imaging methods. RESULTS: HUp showed a very good linear correlation with protein concentration in vitro. In clinical samples, HUp correlated rather well with cell count and triglyceride content. PCI was better than absorption imaging at differentiating protein concentrations in the protein samples as well as at differentiating blood plasma from cellular components. PCI also allowed for differentiation of watery samples (such as lymphoceles) from pus. CONCLUSION: Phase-contrast computed tomography is a promising tool for the differentiation of pathologic fluids that appear homogenous with conventional attenuation imaging.


Assuntos
Líquidos Corporais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Sangue/diagnóstico por imagem , Humanos , Interferometria , Imagens de Fantasmas , Proteínas/metabolismo , Reprodutibilidade dos Testes , Razão Sinal-Ruído
16.
Sci Rep ; 6: 24022, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27040492

RESUMO

The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.


Assuntos
Cerebelo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Interferometria
17.
PLoS One ; 11(3): e0151889, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003308

RESUMO

X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science.


Assuntos
Imageamento Tridimensional/métodos , Lipídeos/análise , Proteínas/análise , Tomografia Computadorizada por Raios X/métodos , Água/análise , Animais , Tecido Conjuntivo/fisiologia , Laticínios/análise , Humanos , Imagens de Fantasmas , Carne Vermelha/análise , Suínos
18.
Biomed Opt Express ; 7(2): 381-91, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977347

RESUMO

Differential phase-contrast X-ray imaging using a Talbot-Lau interferometer has recently shown promising results for applications in medical imaging. However, reducing the applied radiation dose remains a major challenge. In this study, we consider the realization of a Talbot-Lau interferometer in a high Talbot order to increase the signal-to-noise ratio for low-dose applications. The quantitative performance of π and π/2 systems at high Talbot orders is analyzed through simulations, and the design energy and X-ray spectrum are optimized for mammography. It is found that operation even at very high Talbot orders is feasible and beneficial for image quality. As long as the X-ray spectrum is matched to the visibility spectrum, the SNR continuously increases with the Talbot order for π-systems. We find that the optimal X-ray spectra and design energies are almost independent of the Talbot order and that the overall imaging performance is robust against small variations in these parameters. Discontinuous spectra, such as that from molybdenum, are less robust because the characteristic lines may coincide with minima in the visibility spectra; however, they may offer slightly better performance. We verify this hypothesis by realizing a prototype system with a mean fringe visibility of above 40% at the seventh Talbot order. With this prototype, a proof-of-principle measurement of a freshly dissected breast at reasonable compression to 4 cm is conducted with a mean glandular dose of only 3 mGy but with a high SNR.

19.
Eur Radiol ; 26(9): 3223-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26679184

RESUMO

OBJECTIVES: To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria. METHODS: Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated. RESULTS: A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen's kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001. CONCLUSIONS: These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology. KEY POINTS: • Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT. • Phase-contrast CT can detect and differentiate AHA plaque types. • Calcifications caused streak artefacts and reduced sensitivity in type VI lesions. • Overall agreement was higher in carotid than in coronary arteries.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Placa Aterosclerótica/classificação , Placa Aterosclerótica/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , American Heart Association , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Placa Aterosclerótica/patologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
20.
PLoS One ; 10(8): e0137016, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322638

RESUMO

X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.


Assuntos
Tecido Conjuntivo/fisiologia , Humanos , Rim/fisiologia , Fígado/fisiologia , Microscopia de Contraste de Fase/métodos , Músculos/fisiologia , Pâncreas/fisiologia , Fótons , Tomografia Computadorizada por Raios X/métodos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA