Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38136325

RESUMO

Melanoma is responsible for the majority of skin cancer-related fatalities. Immune checkpoint inhibitor (ICI) treatments have revolutionized the management of the disease by significantly increasing patient survival rates. However, a considerable number of tumors treated with these drugs fail to respond or may develop resistance over time. Tumor growth and its response to therapies are critically influenced by the tumor microenvironment (TME); it directly supports cancer cell growth and influences the behavior of surrounding immune cells, which can become tumor-permissive, thereby rendering immunotherapies ineffective. Ex vivo modeling of melanomas and their response to treatment could significantly advance our understanding and predictions of therapy outcomes. Efforts have been directed toward developing reliable models that accurately mimic melanoma in its appropriate tissue environment, including tumor organoids, bioprinted tissue constructs, and microfluidic devices. However, incorporating and modeling the melanoma TME and immune component remains a significant challenge. Here, we review recent literature regarding the generation of in vitro 3D models of normal skin and melanoma and the approaches used to incorporate the immune compartment in such models. We discuss how these constructs could be combined and used to test immunotherapies and elucidate treatment resistance mechanisms. The development of 3D in vitro melanoma models that faithfully replicate the complexity of the TME and its interaction with the immune system will provide us with the technical tools to better understand ICI resistance and increase its efficacy, thereby improving personalized melanoma therapy.

2.
Sci Transl Med ; 15(716): eadf7547, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792956

RESUMO

Bioprinting is a promising alternative method to generate skin substitutes because it can replicate the structural organization of the skin into biomimetic layers in vitro. In this study, six primary human skin cell types were used to bioprint a trilayer skin construct consisting of epidermis, dermis, and hypodermis. Transplantation of the bioprinted skin with human cells onto full-thickness wounds of nu/nu mice promoted rapid vascularization and formation of epidermal rete ridges analogous to the native human epidermis, with a normal-looking extracellular matrix. Cell-specific staining confirmed the integration of the implanted cells into the regenerated skin. Using a similar approach, a 5 centimeter-by-5 centimeter bioprinted autologous porcine skin graft was transplanted onto full-thickness wounds in a porcine excisional wound model. The bioprinted skin graft improved epithelialization, reduced skin contraction, and supported normal collagen organization with reduced fibrosis. Differential gene expression demonstrated pro-remodeling protease activity in wounds transplanted with bioprinted autologous skin grafts. These results demonstrate that bioprinted skin can support skin regeneration to allow for nonfibrotic wound healing and suggest that the skin bioprinting technology may be applicable for human clinical use.


Assuntos
Pele , Cicatrização , Camundongos , Humanos , Suínos , Animais , Epiderme , Regeneração , Reepitelização , Transplante de Pele
3.
Annu Rev Chem Biomol Eng ; 13: 481-499, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35385675

RESUMO

Three-dimensional printing is a still-emerging technology with high impact for the medical community, particularly in the development of tissues for the clinic. Many types of printers are under development, including extrusion, droplet, melt, and light-curing technologies. Herein we discuss the various types of 3D printers and their strengths and weaknesses concerning tissue engineering. Despite the advantages of 3D printing, challenges remain in the development of large, clinically relevant tissues. Advancements in bioink development, printer technology, tissue vascularization, and cellular sourcing/expansion are discussed, alongside future opportunities for the field. Trends regarding in situ printing, personalized medicine, and whole organ development are highlighted.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
4.
Biomolecules ; 11(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34827591

RESUMO

The development of appropriate bioinks is a complex task, dependent on the mechanical and biochemical requirements of the final construct and the type of printer used for fabrication. The two most common tissue printers are micro-extrusion and digital light projection printers. Here we briefly discuss the required characteristics of a bioink for each of these printing processes. However, physical printing is only a short window in the lifespan of a printed construct-the system must support and facilitate cellular development after it is printed. To that end, we provide a broad overview of some of the biological molecules currently used as bioinks. Each molecule has advantages for specific tissues/cells, and potential disadvantages are discussed, along with examples of their current use in the field. Notably, it is stressed that active researchers are trending towards the use of composite bioinks. Utilizing the strengths from multiple materials is highlighted as a key component of bioink development.


Assuntos
Bioimpressão , Engenharia Tecidual , Alicerces Teciduais
5.
Methods Mol Biol ; 2140: 65-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32207106

RESUMO

The field of bioengineering has long pursued the goal of fabricating large-scale tissue constructs for use both in vitro and in vivo. Recent technological advances have indicated that bioprinting will be a key technique in manufacturing these specimens. This chapter aims to provide an overview of what has been achieved to date through the use of microextrusion bioprinters and what major challenges still impede progress. Microextrusion printer configurations will be addressed along with critical design characteristics including nozzle specifications and bioink modifications. Significant challenges within the field with regard to achieving long-term cell viability and vascularization, and current research that shows promise in mitigating these challenges in the near future are discussed. While microextrusion is a broad field with many applications, this chapter aims to provide an overview of the field with a focus on its applications toward human-sized tissue constructs.


Assuntos
Materiais Biocompatíveis , Bioimpressão/métodos , Impressão Tridimensional , Órgãos Artificiais , Bioimpressão/instrumentação , Bioimpressão/normas , Sobrevivência Celular , Desenho de Equipamento , Humanos , Teste de Materiais , Microvasos , Tamanho do Órgão , Impressão Tridimensional/instrumentação , Impressão Tridimensional/normas , Reologia , Resistência ao Cisalhamento , Engenharia Tecidual/métodos , Engenharia Tecidual/normas , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA