Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Data Brief ; 42: 108050, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35372651

RESUMO

We present data collected for the research article "Advances in Spiral fMRI: A High-resolution Study with Single-shot Acquisition" (Kasper et al. 2022). All data was acquired on a 7T ultra-high field MR system (Philips Achieva), equipped with a concurrent magnetic field monitoring setup based on 16 NMR probes. For task-based fMRI, a visual quarterfield stimulation paradigm was employed, alongside physiological monitoring via peripheral recordings. This data collection contains different datasets pertaining to different purposes: (1) Measured magnetic field dynamics (k0, spiral k-space trajectories, 2nd order spherical harmonics, concomitant fields) during ultra-high field fMRI sessions from six subjects, as well as concurrent temperature curves of the gradient coil, to explore MR system and subject-induced variability of field fluctuations and assess the impact of potential correction methods. (2) MR Raw Data, i.e., coil and concurrent encoding magnetic field (trajectory) data, of a single subject, as well as nominal spiral gradient waveforms, precomputed B0 and coil sensitivity maps, to enable testing of alternative image reconstruction approaches for spiral fMRI data. (3) Reconstructed image time series of the same subject alongside behavioral and physiological logfiles, to reproduce the fMRI preprocessing and analysis, as well as figures presented in the research article related to this article, using the published analysis code repository. All data is provided in standardized formats for the respective research area. In particular, ISMRMRD (HDF5) is used to store raw coil data and spiral trajectories, as well as measured field dynamics. Likewise, the NIfTI format is used for all imaging data (anatomical MRI and spiral fMRI, B0 and coil sensitivity maps).

2.
Magn Reson Med ; 87(5): 2224-2238, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34932233

RESUMO

PURPOSE: Many aspects and imperfections of gradient dynamics in MRI have been successfully captured by linear time-invariant (LTI) models. Changes in gradient behavior due to heating, however, violate time invariance. The goal of this work is to study such changes at the level of transfer functions and model them by thermal extension of the LTI framework. METHODS: To study the impact of gradient heating on transfer functions, a clinical MR system was heated using a range of high-amplitude DC and AC waveforms, each followed by measuring transfer functions in rapid succession while the system cooled down. Simultaneously, gradient temperature was monitored with an array of temperature sensors positioned according to initial infrared recordings of the gradient tube. The relation between temperatures and transfer functions is cast into local and global linear models. The models are analysed in terms of self-consistency, conditioning, and prediction performance. RESULTS: Pronounced thermal effects are observed in the time resolved transfer functions, largely attributable to in-coil eddy currents and mechanical resonances. Thermal modeling is found to capture these effects well. The keys to good model performance are well-placed temperature sensors and suitable training data. CONCLUSION: Heating changes gradient response, violating time invariance. The utility of LTI modeling can nevertheless be recovered by a linear thermal extension, relying on temperature sensing and adequate one-time training.


Assuntos
Imageamento por Ressonância Magnética , Modelos Lineares , Imagens de Fantasmas
3.
Neuroimage ; 246: 118738, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800666

RESUMO

Spiral fMRI has been put forward as a viable alternative to rectilinear echo-planar imaging, in particular due to its enhanced average k-space speed and thus high acquisition efficiency. This renders spirals attractive for contemporary fMRI applications that require high spatiotemporal resolution, such as laminar or columnar fMRI. However, in practice, spiral fMRI is typically hampered by its reduced robustness and ensuing blurring artifacts, which arise from imperfections in both static and dynamic magnetic fields. Recently, these limitations have been overcome by the concerted application of an expanded signal model that accounts for such field imperfections, and its inversion by iterative image reconstruction. In the challenging ultra-high field environment of 7 Tesla, where field inhomogeneity effects are aggravated, both multi-shot and single-shot 2D spiral imaging at sub-millimeter resolution was demonstrated with high depiction quality and anatomical congruency. In this work, we further these advances towards a time series application of spiral readouts, namely, single-shot spiral BOLD fMRI at 0.8 mm in-plane resolution. We demonstrate that high-resolution spiral fMRI at 7 T is not only feasible, but delivers both excellent image quality, BOLD sensitivity, and spatial specificity of the activation maps, with little artifactual blurring. Furthermore, we show the versatility of the approach with a combined in/out spiral readout at a more typical resolution (1.5 mm), where the high acquisition efficiency allows to acquire two images per shot for improved sensitivity by echo combination.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Adulto Jovem
4.
Neuroimage ; 245: 118674, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34718138

RESUMO

Spiral imaging is very well suited for functional MRI, however its use has been limited by the fact that artifacts caused by gradient imperfections and B0 inhomogeneity are more difficult to correct compared to EPI. Effective correction requires accurate knowledge of the traversed k-space trajectory. With the goal of making spiral fMRI more accessible, we have evaluated image reconstruction using trajectories predicted by the gradient impulse response function (GIRF), which can be determined in a one-time calibration step. GIRF-predicted reconstruction was tested for high-resolution (0.8 mm) fMRI at 7T. Image quality and functional results of the reconstructions using GIRF-prediction were compared to reconstructions using the nominal trajectory and concurrent field monitoring. The reconstructions using nominal spiral trajectories contain substantial artifacts and the activation maps contain misplaced activation. Image artifacts are substantially reduced when using the GIRF-predicted reconstruction, and the activation maps for the GIRF-predicted and monitored reconstructions largely overlap. The GIRF reconstruction provides a large increase in the spatial specificity of the activation compared to the nominal reconstruction. The GIRF-reconstruction generates image quality and fMRI results similar to using a concurrently monitored trajectory. The presented approach does not prolong or complicate the fMRI acquisition. Using GIRF-predicted trajectories has the potential to enable high-quality spiral fMRI in situations where concurrent trajectory monitoring is not available.


Assuntos
Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Mapeamento Encefálico , Calibragem , Estudos de Viabilidade , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
5.
Magn Reson Med ; 85(4): 1924-1937, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33280160

RESUMO

PURPOSE: Spiral readouts combine several favorable properties that promise superior net sensitivity for diffusion imaging. The purpose of this study is to verify the signal-to-noise ratio (SNR) benefit of spiral acquisition in comparison with current echo-planar imaging (EPI) schemes. METHODS: Diffusion-weighted in vivo brain data from three subjects were acquired with a single-shot spiral sequence and several variants of single-shot EPI, including full-Fourier and partial-Fourier readouts as well as different diffusion-encoding schemes. Image reconstruction was based on an expanded signal model including field dynamics obtained by concurrent field monitoring. The effective resolution of each sequence was matched to that of full-Fourier EPI with 1 mm nominal resolution. SNR maps were generated by determining the noise statistics of the raw data and analyzing the propagation of equivalent synthetic noise through image reconstruction. Using the same approach, maps of noise amplification due to parallel imaging (g-factor) were calculated for different acceleration factors. RESULTS: Relative to full-Fourier EPI at b = 0 s/mm2 , spiral acquisition yielded SNR gains of 42-88% and 40-89% in white and gray matter, respectively, depending on the diffusion-encoding scheme. Relative to partial-Fourier EPI, the gains were 36-44% and 34-42%. Spiral g-factor maps exhibited less spatial variation and lower maxima than their EPI counterparts. CONCLUSION: Spiral readouts achieve significant SNR gains in the order of 40-80% over EPI in diffusion imaging at 3T. Combining systematic effects of shorter echo time, readout efficiency, and favorable g-factor behavior, similar benefits are expected across clinical and neurosciences uses of diffusion imaging.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
6.
IEEE Trans Med Imaging ; 39(3): 806-815, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31425067

RESUMO

MRI gradient systems are required to generate magnetic field gradient waveforms with very high fidelity. This is commonly implemented by gradient system calibration and pre-emphasis. However, a number of mechanisms, particularly thermal changes, cause variation in the gradient response over time, which cannot be addressed by calibration approaches. To overcome this limitation, we present a novel method termed gradient response harvesting, where the gradient response is continuously characterized during the course of a normal MR sequence. Snippets of field measurements are repeatedly acquired during an MR sequence, and from these multiple field measurements and the known nominal MR sequence gradients, the gradient response and gradient/field offsets are calculated. The calculation is implemented in a model-based and a model-free variant. The method is demonstrated for EPI with high gradient duty-cycle, where the continuous gradient characterization is used to obtain k-space trajectory estimates that are employed in the subsequent image reconstruction. During the course of the MR sequence, changes in both the envelope and the phase of the gradient response functions were observed, including shifts of mechanical resonances. The gradient response changes were also reflected in the calculated uninterrupted gradient waveforms and thus in the k-space trajectories. Using the updated encoding information in the image reconstruction removed ghosting artifacts, that otherwise impaired the image quality. We introduced the concept of gradient response harvesting and demonstrated its feasibility. The obtained gradient response functions may be used for quality assurance/preventive maintenance, real-time adaptation of gradient pre-emphasis or to calculate uninterrupted gradient field evolutions.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Humanos , Campos Magnéticos
7.
Magn Reson Med ; 79(4): 2036-2045, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28856717

RESUMO

PURPOSE: MRI of tissues with short coherence lifetimes T2 or T2* can be performed efficiently using zero echo time (ZTE) techniques such as algebraic ZTE, pointwise encoding time reduction with radial acquisition (PETRA), and water- and fat-suppressed proton projection MRI (WASPI). They share the principal challenge of recovering data in central k-space missed due to an initial radiofrequency dead time. The purpose of this study was to compare the three techniques directly, with a particular focus on their behavior in the presence of ultra-short-lived spins. METHODS: The most direct comparison was enabled by aligning acquisition and reconstruction strategies of the three techniques. Image quality and short- T2* performance were investigated using point spread functions, 3D simulations, and imaging of phantom and bone samples with short (<1 ms) and ultra-short (<100 µs) T2*. RESULTS: Algebraic ZTE offers favorable properties but is limited to k-space gaps up to approximately three Nyquist dwells. At larger gaps, PETRA enables robust imaging with little compromise in image quality, whereas WASPI may be prone to artifacts from ultra-short T2* species. CONCLUSION: For small k-space gaps (<4 dwells) and T2* much larger than the dead time, all techniques enable artifact-free short- T2* MRI. However, if these requirements are not fulfilled careful consideration is needed and PETRA will generally achieve better image quality. Magn Reson Med 79:2036-2045, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Animais , Artefatos , Osso e Ossos/diagnóstico por imagem , Bovinos , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Teóricos , Imagens de Fantasmas , Polimetil Metacrilato/química , Prótons , Ondas de Rádio , Tíbia/diagnóstico por imagem
8.
IEEE Trans Med Imaging ; 37(2): 408-416, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28910759

RESUMO

For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imagens de Fantasmas , Ondas de Rádio
9.
Magn Reson Med ; 79(4): 2046-2056, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28840611

RESUMO

PURPOSE: To develop a method of tracking active NMR markers that requires no alterations of common imaging sequences and can be used for prospective motion correction (PMC) in brain MRI. METHODS: Localization of NMR markers is achieved by acquiring short signal snippets in rapid succession and evaluating them jointly. To spatially encode the markers, snippets are timed such that signal phase is accrued during sequence intervals with suitably diverse gradient actuation. For motion tracking and PMC in brain imaging, the markers are mounted on a lightweight headset. PMC is then demonstrated with high-resolution T2 *- and T1 -weighted imaging sequences in the presence of instructed as well as residual unintentional head motion. RESULTS: With both unaltered sequences, motion tracking was achieved with precisions on the order of 10 µm and 0.01° and temporal resolution of 48 and 39 ms, respectively. On this basis, PMC improved image quality significantly throughout. CONCLUSION: The proposed approach permits high-precision motion tracking and PMC with standard imaging sequences. It does so without altering sequence design and thus overcomes a key hindrance to routine motion tracking with NMR markers. Magn Reson Med 79:2046-2057, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Calibragem , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
10.
Neuroimage ; 168: 88-100, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28774650

RESUMO

We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T2* contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/anatomia & histologia , Feminino , Humanos , Masculino , Adulto Jovem
11.
Magn Reson Med ; 77(1): 83-91, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770473

RESUMO

PURPOSE: The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. METHODS: Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B0 , and coil sensitivity encoding. The encoding model is determined by B0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. RESULTS: Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. CONCLUSION: Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Masculino , Imagens de Fantasmas
12.
J Magn Reson ; 263: 147-155, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26796113

RESUMO

For direct NMR detection and imaging of compounds with very short coherence life times the dead time between radio-frequency (RF) pulse and reception of the free induction decay (FID) is a major limiting factor. It is typically dominated by the transient and recovery times of currently available transmit-receive (T/R) switches and amplification chains. A novel PIN diode-based T/R switch topology is introduced allowing for fast switching by high bias transient currents but nevertheless producing a very low video leakage signal and insertion loss (0.5dB). The low transient spike level in conjunction with the high isolation (75dB) prevent saturation of the preamplifier entirely which consequently does not require time for recovery. Switching between transmission and reception is demonstrated within less than 1µs in bench tests as well as in acquisitions of FIDs and zero echo time (ZTE) images with bandwidths up to 500kHz at 7T. Thereby the 2kW switch exhibited a rise-time of 350ns (10-99%) producing however a total video leakage of below 20mV peak-to-peak and less than -89dBm in-band. The achieved switching time renders the RF pulse itself the dominant contribution to the dead time in which a coherence cannot be observed, thus making pulsed NMR experiments almost time-optimal even for compounds with very short signal life times.

13.
IEEE Trans Med Imaging ; 35(6): 1452-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26742126

RESUMO

MRI relies on static and spatially varying dynamic magnetic fields of high accuracy. NMR field probes permit the direct observation of spatiotemporal field dynamics for diverse purposes such as data correction, field control, sequence validation, and hardware characterization. However, due to probe signal decay and dephasing existing field cameras are limited in terms of readout duration and the extent of k -space that can be covered. The present work aims to overcome these limitations by the transition to short-lived NMR probes and rapid re-excitation. The proposed approach uses probes with T 2 so short that thermal relaxation dominates signal decay even in the presence of strongest gradients. They are integrated with transmit, receive and sequencing electronics that permit high-rate re-excitation with optional probe alternation as well as complementary RF pulse recording. The system is demonstrated by monitoring of sample MRI sequences with long readouts and large gradient moments. It is compared with the conventional long-lived probe concept and characterized in terms of net sensitivity and sources of systematic error. Continuous k -space trajectory mapping is demonstrated and validated by trajectory-based image reconstruction.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Ondas de Rádio
14.
NMR Biomed ; 29(9): 1162-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26269210

RESUMO

Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Monitoramento de Radiação/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Doses de Radiação , Monitoramento de Radiação/métodos , Ondas de Rádio
15.
Magn Reson Med ; 76(2): 430-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26307944

RESUMO

PURPOSE: Real-time field control can serve to reduce respiratory field perturbations during T2 * imaging at high fields. This work investigates the effectiveness of this approach in relation to key variables such as patient physique, breathing patterns, slice location, and the choice of sequence. METHODS: To cover variation in physical constitution and breathing behavior, volunteers with a wide range of body-mass-indices were asked to breathe either normally or deeply during T2 *-weighted image acquisition at 7T. Ensuing field fluctuation was countered by real-time field control or merely recorded in reference experiments. The impact of the control system on image quality was assessed by classifying and grading artifacts related to field fluctuation. RESULTS: The amplitude of respiratory field changes and related artifacts were generally stronger for subjects with higher body-mass-index and for lower slices. Field control was found effective at mitigating all five types of artifacts that were studied. Overall image quality was systematically improved. Residual artifacts in low slices are attributed to insufficient spatial order of the control system. CONCLUSION: Real-time field control was found to be a robust means of countering respiratory field perturbations in variable conditions encountered in high-field brain imaging. Reducing net fluctuation, it generally expands the feasibility of high-field T2 * imaging toward challenging patients and brain regions. Magn Reson Med 76:430-439, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Algoritmos , Sistemas Computacionais , Campos Eletromagnéticos , Feminino , Humanos , Masculino , Radiometria/métodos , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
16.
Magn Reson Med ; 75(4): 1831-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25975352

RESUMO

PURPOSE: MR image formation and interpretation relies on highly accurate dynamic magnetic fields of high fidelity. A range of mechanisms still limit magnetic field fidelity, including magnet drifts, eddy currents, and finite linearity and stability of power amplifiers used to drive gradient and shim coils. Addressing remaining errors by means of hardware, sequence, or signal processing optimizations, calls for immediate observation by magnetic field monitoring. The present work presents a stand-alone monitoring system delivering insight into such field imperfections for MR sequence and system analysis. METHODS: A flexible NMR field probe-based stand-alone monitoring system, built on a software-defined-radio approach, is introduced and used to sense field dynamics up to third-order in space in a selection of situations with different time scales. RESULTS: Highly sensitive trajectories are measured and successfully used for image reconstruction. Further field perturbations due to mechanical oscillations and thermal field drifts following demanding gradient use and external interferences are studied. CONCLUSION: A flexible and versatile monitoring system is presented, delivering camera-like access to otherwise hardly accessible field dynamics with nanotesla resolution. Its stand-alone nature enables field analysis even during unknown MR system states.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
17.
Magn Reson Med ; 74(4): 925-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26183218

RESUMO

PURPOSE: Diffusion MRI is compromised by unknown field perturbation during image encoding. The purpose of this study was to address this problem using the recently described approach of concurrent magnetic field monitoring. METHODS: Magnetic field dynamics were monitored during the echo planar imaging readout of a common diffusion-weighted MRI sequence using an integrated magnetic field camera setup. The image encoding including encoding changes over the duration of entire scans were quantified and analyzed. Field perturbations were corrected by accounting for them in generalized image reconstruction. The impact on image quality along with geometrical congruence among different diffusion-weighted images was assessed both qualitatively and quantitatively. RESULTS: The most significant field perturbations were found to be related to higher-order eddy currents from diffusion-weighting gradients and B0 field drift as well as gradual changes of short-term eddy current behavior and mechanical oscillations during the scan. All artifacts relating to dynamic field perturbations were eliminated by incorporating the measured encoding in image reconstruction. CONCLUSION: Concurrent field monitoring combined with generalized reconstruction enhances depiction fidelity in diffusion imaging. In addition to artifact reduction, it improves geometric congruence and thus facilitates image combination for quantitative diffusion analysis.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Feminino , Humanos , Campos Magnéticos , Imagens de Fantasmas , Temperatura , Adulto Jovem
18.
PLoS One ; 10(4): e0124126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901747

RESUMO

Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.


Assuntos
Cabeça/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Modelos Anatômicos , Pescoço/anatomia & histologia , Anisotropia , Mapeamento Encefálico , Simulação por Computador , Imagem de Tensor de Difusão , Cabeça/irrigação sanguínea , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Mesencéfalo/anatomia & histologia , Mesencéfalo/irrigação sanguínea , Núcleos da Linha Média do Tálamo/anatomia & histologia , Núcleos da Linha Média do Tálamo/irrigação sanguínea , Imagem Multimodal , Pescoço/irrigação sanguínea , Pescoço/inervação
19.
Magn Reson Med ; 73(5): 1833-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24903278

RESUMO

PURPOSE: Magnetic field fluctuations caused by subject motion, such as breathing or limb motion, can degrade image quality in brain MRI, especially at high field strengths. The purpose of this study was to investigate the feasibility of retrospectively correcting for such physiological field perturbations based on concurrent field monitoring. THEORY AND METHODS: High-resolution T2*-weighted gradient-echo images of the brain were acquired at 7T with subjects performing different breathing and hand movement patterns. Field monitoring with a set of (19) F NMR probes distributed around the head was performed in two variants: concurrently with imaging or as a single field measurement per readout. The measured field fluctuations were then accounted for in the image reconstruction. RESULTS: Significant field fluctuations due to motion were observed in all subjects, resulting in severe artifacts in uncorrected images. The artifacts were largely removed by reconstruction based on field monitoring. Accounting for field perturbations up to the 1st spatial order was generally sufficient to recover good image quality. CONCLUSIONS: It has been demonstrated that artifacts due to physiologically induced dynamic field perturbations can be greatly reduced by retrospective image correction based on field monitoring. The necessity to perform such correction is greatest at high fields and for field-sensitive techniques such as T2*-weighted imaging.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino
20.
Magn Reson Med ; 73(2): 884-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24634192

RESUMO

PURPOSE: MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. METHODS: An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. RESULTS: The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. CONCLUSION: Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla.


Assuntos
Encéfalo/anatomia & histologia , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA