Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Stat Assoc ; 118(541): 571-582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346226

RESUMO

The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, identifiability issues have led practitioners to abandon it in favor of the simpler but more restrictive Vector AutoRegressive (VAR) model. We narrow this gap with a new optimization-based approach to VARMA identification built upon the principle of parsimony. Among all equivalent data-generating models, we use convex optimization to seek the parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We establish consistency of our estimators in a double-asymptotic regime. Our non-asymptotic error bound analysis accommodates both model specification and parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic net regression under a singular covariance structure of regressors, which may be of independent interest. We illustrate the advantage of our method over VAR alternatives on three real data examples.

2.
J Mach Learn Res ; 232022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38264536

RESUMO

High-dimensional graphical models are often estimated using regularization that is aimed at reducing the number of edges in a network. In this work, we show how even simpler networks can be produced by aggregating the nodes of the graphical model. We develop a new convex regularized method, called the tree-aggregated graphical lasso or tag-lasso, that estimates graphical models that are both edge-sparse and node-aggregated. The aggregation is performed in a data-driven fashion by leveraging side information in the form of a tree that encodes node similarity and facilitates the interpretation of the resulting aggregated nodes. We provide an efficient implementation of the tag-lasso by using the locally adaptive alternating direction method of multipliers and illustrate our proposal's practical advantages in simulation and in applications in finance and biology.

3.
BMC Syst Biol ; 10(1): 72, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27516087

RESUMO

BACKGROUND: Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. In genomics, CCA has become increasingly important to estimate the associations between gene expression data and DNA copy number change data. The identification of such associations might help to increase our understanding of the development of diseases such as cancer. However, these data sets are typically high-dimensional, containing a lot of variables relative to the number of objects. Moreover, the data sets might contain atypical observations since it is likely that objects react differently to treatments. We discuss a method for Robust Sparse CCA, thereby providing a solution to both issues. Sparse estimation produces canonical vectors with some of their elements estimated as exactly zero. As such, their interpretability is improved. Robust methods can cope with atypical observations in the data. RESULTS: We illustrate the good performance of the Robust Sparse CCA method by several simulation studies and three biometric examples. Robust Sparse CCA considerably outperforms its main alternatives in (1) correctly detecting the main associations between the data sets, in (2) accurately estimating these associations, and in (3) detecting outliers. CONCLUSIONS: Robust Sparse CCA delivers interpretable canonical vectors, while at the same time coping with outlying observations. The proposed method is able to describe the associations between high-dimensional data sets, which are nowadays commonplace in genomics. Furthermore, the Robust Sparse CCA method allows to characterize outliers.


Assuntos
Biologia Computacional/métodos , Algoritmos , Neoplasias da Mama/genética
4.
Biom J ; 57(5): 834-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147637

RESUMO

Canonical correlation analysis (CCA) describes the associations between two sets of variables by maximizing the correlation between linear combinations of the variables in each dataset. However, in high-dimensional settings where the number of variables exceeds the sample size or when the variables are highly correlated, traditional CCA is no longer appropriate. This paper proposes a method for sparse CCA. Sparse estimation produces linear combinations of only a subset of variables from each dataset, thereby increasing the interpretability of the canonical variates. We consider the CCA problem from a predictive point of view and recast it into a regression framework. By combining an alternating regression approach together with a lasso penalty, we induce sparsity in the canonical vectors. We compare the performance with other sparse CCA techniques in different simulation settings and illustrate its usefulness on a genomic dataset.


Assuntos
Biometria/métodos , Algoritmos , Genômica , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA