Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575093

RESUMO

Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.


Assuntos
Miofibrilas , Sarcômeros , Animais , Conectina/química , Conectina/genética , Conectina/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Ratos , Sarcômeros/metabolismo
2.
Biology (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671725

RESUMO

Cardiolipin (CL), the major mitochondrial phospholipid, regulates the activity of many mitochondrial membrane proteins. CL composition is shifted in heart failure with decreases in linoleate and increases in oleate side chains, but whether cardiolipin composition directly regulates metabolism is unknown. This study defines cardiolipin composition in rat heart and liver at three distinct ages to determine the influence of CL composition on beta-oxidation (ß-OX). CL species, expression of ß-OX and glycolytic genes, and carnitine palmitoyltransferase (CPT) activity were characterized in heart and liver from neonatal, juvenile, and adult rats. Ventricular myocytes were cultured from neonatal, juvenile, and adult rats and cardiolipin composition and CPT activity were measured. Cardiolipin composition in neonatal rat ventricular cardiomyocytes (NRVMs) was experimentally altered and mitochondrial respiration was assessed. Linoleate-enrichment of CL was observed in rat heart, but not liver, with increasing age. ß-OX genes and CPT activity were generally higher in adult heart and glycolytic genes lower, as a function of age, in contrast to liver. Palmitate oxidation increased in NRVMs when CL was enriched with linoleate. Our results indicate (1) CL is developmentally regulated, (2) linoleate-enrichment is associated with increased ß-OX and a more oxidative mitochondrial phenotype, and (3) experimentally induced linoleate-enriched CL in ventricular myocytes promotes a shift from pyruvate metabolism to fatty acid ß-OX.

3.
Physiol Rep ; 9(13): e14940, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245129

RESUMO

Risk for heart disease increases with advanced age and differs between sexes, with females generally protected from heart disease until menopause. Despite these epidemiological observations, the molecular mechanisms that underlie sex-specific differences in cardiac function have not been fully described. We used high throughput transcriptomics in juvenile (5 weeks), adult (4-6 months), and aged (18 months) male and female mice to understand how cardiac gene expression changes across the life course and by sex. While male gene expression profiles differed between juvenile-adult and juvenile-aged (254 and 518 genes, respectively), we found no significant differences in adult-aged gene expression. Females had distinct gene expression changes across the life course with 1835 genes in juvenile-adult and 1328 in adult-aged. Analysis of differentially expressed genes (DEGs) suggests that juvenile to adulthood genes were clustered in cell cycle and development-related pathways in contrast to adulthood-aged which were characterized by immune-and inflammation-related pathways. Analysis of sex differences within each age suggests that juvenile and aged cardiac transcriptomes are different between males and females, with significantly fewer DEGs identified in adult males and females. Interestingly, the male-female differences in early age were distinct from those in advanced age. These findings are in contrast to expected sex differences historically attributed to estrogen and could not be explained by estrogen-direct mechanisms alone as evidenced by juvenile sexual immaturity and reproductive incompetence in the aged mice. Together, distinct trajectories in cardiac transcriptomic profiles highlight fundamental sex differences across the life course and demonstrate the need for the consideration of age and sex as biological variables in heart disease.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Miocárdio/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Feminino , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Análise de Sequência de RNA , Fatores Sexuais
4.
J Mol Cell Cardiol ; 159: 28-37, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139234

RESUMO

AIMS: Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS: Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS: Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Fosforilação/fisiologia , Animais , Cardiomiopatia Dilatada/metabolismo , Linhagem Celular , Feminino , Células HEK293 , Ventrículos do Coração/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Resposta Sérica/metabolismo
5.
Front Physiol ; 11: 616996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488406

RESUMO

Cardiovascular disease continues to be the leading cause of morbidity and mortality in the United States and thousands of manuscripts each year are aimed at elucidating mechanisms underlying cardiac disease. The methods for quantifying cardiac performance are quite varied, with each technique assessing unique features of cardiac muscle mechanical properties. Accordingly, in this review, we discuss current ex vivo methods for quantifying cardiac muscle performance, highlighting what can be learned from each method, and how each technique can be used in conjunction to complement others for a more comprehensive understanding of cardiac function. Importantly, cardiac function can be assessed at several different levels, from the whole organ down to individual protein-protein interactions. Here, we take a reductionist view of methods that are commonly used to measure the distinct aspects of cardiac mechanical function, beginning with whole heart preparations and finishing with the in vitro motility assay. While each of the techniques are individually well-documented in the literature, there is a significant need for a comparison of the techniques, delineating the mechanical parameters that can are best measured with each technique, as well as the strengths and weaknesses inherent to each method. Additionally, we will consider complementary techniques and how these methods can be used in combination to improve our understanding of cardiac mechanical function. By presenting each of these methods, with their strengths and limitations, in a single manuscript, this review will assist cardiovascular biologists in understanding the existing literature on cardiac mechanical function, as well as designing future experiments.

6.
Am J Physiol Heart Circ Physiol ; 315(4): H1051-H1062, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028197

RESUMO

Sudden cardiac death from ventricular arrhythmias is more common in adult patients with with heart failure compared with pediatric patients with heart failure. We identified age-specific differences in arrhythmogenesis using a guinea pig model of acute ß-adrenergic stimulation. Young and adult guinea pigs were exposed to the ß-adrenergic agonist isoproterenol (ISO; 0.7 mg/kg) for 30 min in the absence or presence of flecainide (20 mg/kg), an antiarrhythmic that blocks Na+ and ryanodine channels. Implanted cardiac monitors (Reveal LINQ, Medtronic) were used to monitor heart rhythm. Alterations in phosphorylation and oxidation of ryanodine receptor 2 (RyR2) were measured in left ventricular tissue. There were age-specific differences in arrhythmogenesis and sudden death associated with acute ß-adrenergic stimulation in guinea pigs. Young and adult guinea pigs developed arrhythmias in response to ISO; however, adult animals developed significantly more premature ventricular contractions and experienced higher arrhythmia-related mortality than young guinea pigs treated with ISO. Although there were no significant differences in the phosphorylation of left ventricular RyR2 between young and adult guinea pigs, adult guinea pigs exposed to acute ISO had significantly more oxidation of RyR2. Flecainide treatment significantly improved survival and decreased the number of premature ventricular contractions in young and adult animals in association with lower RyR2 oxidation. Adult guinea pigs had a greater propensity to develop arrhythmias and suffer sudden death than young guinea pigs when acutely exposed to ISO. This was associated with higher oxidation of RyR2. The incidence of sudden death can be rescued with flecainide treatment, which decreases RyR2 oxidation. NEW & NOTEWORTHY Clinically, adult patients with heart failure are more likely to develop arrhythmias and sudden death than pediatric patients with heart failure. In the present study, older guinea pigs also showed a greater propensity to arrhythmias and sudden death than young guinea pigs when acutely exposed to isoproterenol. Although there are well-described age-related cardiac structural changes that predispose patients to arrhythmogenesis, the present data suggest contributions from dynamic changes in cellular signaling also play an important role in arrhythmogenesis.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Morte Súbita Cardíaca/etiologia , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Isoproterenol , Função Ventricular Esquerda , Potenciais de Ação , Fatores Etários , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Morte Súbita Cardíaca/prevenção & controle , Modelos Animais de Doenças , Feminino , Flecainida/farmacologia , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Oxirredução , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
7.
Sci Rep ; 7(1): 440, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348396

RESUMO

Cooperation is fundamental to the survival of many bacterial species. Previous studies have shown that spatial structure can both promote and suppress cooperation. Most environments where bacteria are found are periodically disturbed, which can affect the spatial structure of the population. Despite the important role that spatial disturbances play in maintaining ecological relationships, it remains unclear as to how periodic spatial disturbances affect bacteria dependent on cooperation for survival. Here, we use bacteria engineered with a strong Allee effect to investigate how the frequency of periodic spatial disturbances affects cooperation. We show that at intermediate frequencies of spatial disturbance, the ability of the bacterial population to cooperate is perturbed. A mathematical model demonstrates that periodic spatial disturbance leads to a tradeoff between accessing an autoinducer and accessing nutrients, which determines the ability of the bacteria to cooperate. Based on this relationship, we alter the ability of the bacteria to access an autoinducer. We show that increased access to an autoinducer can enhance cooperation, but can also reduce ecological resistance, defined as the ability of a population to resist changes due to disturbance. Our results may have implications in maintaining stability of microbial communities and in the treatment of infectious diseases.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Microbiologia Ambiental , Consórcios Microbianos , Interações Microbianas , Percepção de Quorum , Modelos Teóricos , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA