Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124205, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797351

RESUMO

Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India. The mean relative abundance of gene copies was found to be sulI (2.4 × 10-2 copies/16S rRNA gene) > sulII (5.4 × 10-3 copies/16S rRNA gene) > sulIII (2.4 × 10-3 copies/16S rRNA gene) in groundwater (n = 15) and surface water (n = 3). A comparison between antimicrobial resistance (AMR) genes and wastewater indicators, particularly tryptophan:fulvic-like fluorescence, suggests that wastewater was associated with AMR gene prevalence. Urban drainage channels, containing hospital and domestic wastes, are likely a substantial source of antimicrobial resistance in groundwater and surface water, including the Ganges (Ganga) River. This study is a reference point for decision-makers in the fight against antimicrobial resistance because it quantifies and determines potential sources of AMR genes in Indian groundwater.


Assuntos
Farmacorresistência Bacteriana , Água Subterrânea , Sulfonamidas , Índia , Água Subterrânea/química , Sulfonamidas/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água , Genes Bacterianos , Águas Residuárias/microbiologia , Monitoramento Ambiental
2.
Polym Chem ; 15(15): 1511-1521, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633016

RESUMO

High-density poly(ethylene) (HDPE) is an important class of polymer used extensively in plastic packaging as well as numerous other applications. HDPE has a structure that consists of crystalline (monoclinic and orthorhombic) and amorphous domains. Here, we exploit a range of approaches focusing on magic angle spinning (MAS) nuclear magnetic resonance (NMR) aimed at comparing the effect of the HDPE sample formulation (cutting, shaving and cryomilling), from the commercially available manufactured pellets, into these domains and their quantification. 13C cross polarisation (CP) experiments reveal that these formulated HDPEs are qualitatively different and 13C CP build-up curves and 13C direct excitation experiments enable the content of each domain to be obtained, pointing to an increase of monoclinic domain at the expense of the orthorhombic one upon increased processing. The crystallinity contents obtained compared, in some cases, favourably with those obtained by differential scanning calorimetry (DSC) data. These results provide evidence that the manner of preparation of HDPE pellets modifies the concentration of the various domains and suggest that care should be taken during processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA