Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Inorg Chem Front ; 11(16): 5064-5079, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39113903

RESUMO

The transmembrane protein known as the mitochondrial calcium uniporter (MCU) mediates the influx of calcium ions (Ca2+) into the mitochondrial matrix. An overload of mitochondrial Ca2+ ( m Ca2+) is directly linked to damaging effects in pathological conditions. Therefore, inhibitors of the MCU are important chemical biology tools and therapeutic agents. Here, two new analogues of previously reported Ru- and Os-based MCU inhibitors Ru265 and Os245, of the general formula [(C10H15CO2)M(NH3)4(µ-N)M(NH3)4(O2CC10H15)](CF3SO3)3, where M = Ru (1) or Os (2), are reported. These analogues bear adamantane functional groups, which were installed to act as guests for the host molecule cucurbit-[7]-uril (CB[7]). These complexes were characterized and analyzed for their efficiency as guests for CB[7]. As shown through a variety of spectroscopic techniques, each adamantane ligand is encapsulated into one CB[7], affording a supramolecular complex of 1 : 2 stoichiometry. The biological effects of these compounds in the presence and absence of two equiv. CB[7] were assessed. Both complexes 1 and 2 exhibit enhanced cellular uptake compared to the parent compounds Ru265 and Os245, and their uptake is increased further in the presence of CB[7]. Compared to Ru265 and Os245, 1 and 2 are less potent as m Ca2+ uptake inhibitors in permeabilized cell models. However, in intact cell systems, 1 and 2 inhibit the MCU at concentrations as low as 1 µM, marking an advantage over Ru265 and Os245 which require an order of magnitude higher doses for similar biological effects. The presence of CB[7] did not affect the inhibitory properties of 1 and 2. Experiments in primary cortical neurons showed that 1 and 2 can elicit protective effects against oxygen-glucose deprivation at lower doses than those required for Ru265 or Os245. At low concentrations, the protective effects of 1 were modulated by CB[7], suggesting that supramolecular complex formation can play a role in these biological conditions. The in vivo biocompatibility of 1 was investigated in mice. The intraperitoneal administration of these compounds and their CB[7] complexes led to time-dependent induction of seizures with no protective effects elicited by CB[7]. This work demonstrates the potential for supramolecular interactions in the development of MCU inhibitors.

2.
Dalton Trans ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163366

RESUMO

Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 µM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.

3.
Angew Chem Int Ed Engl ; : e202410233, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030817

RESUMO

The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3- selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50:50 and 75:25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95:5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.

4.
J Am Chem Soc ; 146(28): 18927-18937, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968420

RESUMO

Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.


Assuntos
Administração Cutânea , Sulfeto de Hidrogênio , Estruturas Metalorgânicas , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/administração & dosagem , Estruturas Metalorgânicas/química , Animais , Suínos , Pele/metabolismo
5.
Chemistry ; : e202402163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949770

RESUMO

Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.

6.
Br J Pharmacol ; 181(18): 3503-3526, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38779706

RESUMO

BACKGROUND AND PURPOSE: Excitotoxicity due to mitochondrial calcium (Ca2+) overloading can trigger neuronal cell death in a variety of pathologies. Inhibiting the mitochondrial calcium uniporter (MCU) has been proposed as a therapeutic avenue to prevent calcium overloading. Ru265 (ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3) is a cell-permeable inhibitor of the mitochondrial calcium uniporter (MCU) with nanomolar affinity. Ru265 reduces sensorimotor deficits and neuronal death in models of ischemic stroke. However, the therapeutic use of Ru265 is limited by the induction of seizure-like behaviours. EXPERIMENTAL APPROACH: We examined the effect of Ru265 on synaptic and neuronal function in acute brain slices and hippocampal neuron cultures derived from mice, in control and where MCU expression was genetically abrogated. KEY RESULTS: Ru265 decreased evoked responses from calyx terminals and induced spontaneous action potential firing of both the terminal and postsynaptic principal cell. Recordings of presynaptic Ca2+ currents suggested that Ru265 blocks the P/Q type channel, confirmed by the inhibition of currents in cells exogenously expressing the P/Q type channel. Measurements of presynaptic K+ currents further revealed that Ru265 blocked a KCNQ current, leading to increased membrane excitability, underlying spontaneous spiking. Ca2+ imaging of hippocampal neurons showed that Ru265 increased synchronized, high-amplitude events, recapitulating seizure-like activity seen in vivo. Importantly, MCU ablation did not suppress Ru265-induced increases in neuronal activity and seizures. CONCLUSIONS AND IMPLICATIONS: Our findings provide a mechanistic explanation for the pro-convulsant effects of Ru265 and suggest counter screening assays based on the measurement of P/Q and KCNQ channel currents to identify safe MCU inhibitors.


Assuntos
Canais de Cálcio , Neurônios , Compostos de Rutênio , Transmissão Sináptica , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos de Rutênio/farmacologia , Camundongos , Transmissão Sináptica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Células Cultivadas , Cálcio/metabolismo
9.
Eur J Inorg Chem ; 26(9)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37636126

RESUMO

The mitochondrial calcium uniporter (MCU) mediates uptake of calcium ions (Ca2+) into the mitochondria, a process that is vital for maintaining normal cellular function. Inhibitors of the MCU, the most promising of which are dinuclear ruthenium coordination compounds, have found use as both therapeutic agents and tools for studying the importance of this ion channel. In this study, six Co3+ cage compounds with sarcophagine-like ligands were assessed for their abilities to inhibit MCU-mediated mitochondrial Ca2+ uptake. These complexes were synthesized and characterized according to literature procedures and then investigated in cellular systems for their MCU-inhibitory activities. Among these six compounds, [Co(sen)]3+ (3, sen = 5-(4-amino-2-azabutyl)-5-methyl-3,7-diaza-1,9-nonanediamine) was identified to be a potent MCU inhibitor, with IC50 values of inhibition of 160 and 180 nM in permeabilized HeLa and HEK293T cells, respectively. Furthermore, the cellular uptake of compound 3 was determined, revealing moderate accumulation in cells. Most notably, 3 was demonstrated to operate in intact cells as an MCU inhibitor. Collectively, this work presents the viability of using cobalt coordination complexes as MCU inhibitors, providing a new direction for researchers to investigate in future studies.

10.
Front Cell Neurosci ; 17: 1226630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484823

RESUMO

The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.

11.
Ann Hematol ; 102(10): 2753-2763, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422592

RESUMO

Burkitt lymphoma (BL) is an extremely aggressive but curable subtype of non-Hodgkin lymphoma. While younger patients have excellent outcomes in response to aggressive chemoimmunotherapy, the rarity of this disease in older patients and limitations caused by age, comorbidities, and performance status may negate survival advantages. This analysis assessed outcomes of older adults with BL through data provided by the Texas Cancer Registry (TCR). Patients ≥65 years with BL were assessed. Patients were dichotomized into 1997-2007 and 2008-2018. Median overall survival (OS) and disease-specific survival (DSS) were assessed using Kaplan-Meier methodology, and covariates including age, race, sex, stage, primary site, and poverty index were analyzed using Pearson Chi-squared analysis. Odds ratio (OR) with 95% confidence intervals (CI) was used to assess factors contributing to patients not offered systemic therapy. P value <0.05 was considered statistically significant. Non-BL mortality events were also categorized. There were 325 adults, 167 in 1997-2007 and 158 in 2008-2018; 106 (63.5%) and 121 (76.6%) received systemic therapy, a trend that increased with time (p = 0.010). Median OS for 1997-2007 and 2008-2018 was 5 months (95% CI 2.469, 7.531) and 9 months (95% CI 0.000, 19.154) (p = 0.013), and DSS was 72 months (95% CI 56.397, 87.603) (p = 0.604) and not reached, respectively. For patients that received systemic therapy, median OS was 8 months (95% CI 1.278, 14.722) and 26 months (95% CI 5.824, 46.176) (p = 0.072), respectively, and DSS was 79 months (95% CI: 56.416, 101.584) and not reached, respectively (p = 0.607). Age ≥75 years (HR 1.39 [95% CI 1.078, 1.791], p = 0.011) and non-Hispanic whites (HR 1.407 [95% CI 1.024, 1.935], p = 0.035) had poorer outcomes, and patients at the 20-100% poverty index (OR 0.387 [95% CI 0.163, 0.921], p = 0.032) and increasing age at diagnosis (OR 0.947 [95% CI 0.913, 0.983], p = 0.004) were less likely to receive systemic therapy. Of 259 (79.7%) deaths, 62 (23.9%) were non-BL deaths, and 6 (9.6%) of these were from a second cancer. This two-decade analysis of older Texas patients with BL indicates a significant improvement in OS over time. Although patients were more likely to receive systemic therapy over time, treatment disparities existed in patients residing in poverty-stricken regions of Texas and in advancing age. These statewide findings reflect an unmet national need to find a systemic therapeutic strategy that can be tolerated by and augment outcomes in the growing elderly population.


Assuntos
Linfoma de Burkitt , Humanos , Idoso , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/epidemiologia , Texas/epidemiologia , Sistema de Registros
13.
J Am Chem Soc ; 145(17): 9389-9409, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078795

RESUMO

Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+) overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI are discussed.


Assuntos
Complexos de Coordenação , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Morte Celular , Metais , Oxigênio
14.
ChemMedChem ; 18(12): e202300106, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015871

RESUMO

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that is responsible for mediating mitochondrial calcium (mCa2+ ) uptake. Given this critical function, the MCU has been implicated as an important target for addressing various human diseases. As such, there has a been growing interest in developing small molecules that can inhibit this protein. To date, metal coordination complexes, particularly multinuclear ruthenium complexes, are the most widely investigated MCU inhibitors due to both their potent inhibitory activities as well as their longstanding use for this application. Recent efforts have expanded the metal-based toolkit for MCU inhibition. This concept paper summarizes the development of new metal-based inhibitors of the MCU and their structure-activity relationships in the context of improving their potential for therapeutic use in managing human diseases related to mCa2+ dysregulation.


Assuntos
Canais de Cálcio , Mitocôndrias , Humanos , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Mitocôndrias/metabolismo , Relação Estrutura-Atividade
15.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857182

RESUMO

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions , Dieta , Dieta Hiperlipídica , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Obesidade/metabolismo , Termogênese/genética
16.
RSC Chem Biol ; 4(1): 84-93, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36685255

RESUMO

Dysregulation of mitochondrial calcium uptake mediated by the mitochondrial calcium uniporter (MCU) is implicated in several pathophysiological conditions. Dinuclear ruthenium complexes are effective inhibitors of the MCU and have been leveraged as both tools to study mitochondrial calcium dynamics and potential therapeutic agents. In this study, we report the synthesis and characterization of Os245 ([Os2(µ-N)(NH3)8Cl2]3+) which is the osmium-containing analogue of our previously reported ruthenium-based inhibitor Ru265. This complex and its aqua-capped analogue Os245' ([Os2(µ-N)(NH3)8(OH2)2]5+) are both effective inhibitors of the MCU in permeabilized and intact cells. In comparison to the ruthenium-based inhibitor Ru265 (k obs = 4.92 × 10-3 s-1), the axial ligand exchange kinetics of Os245 are two orders of magnitude slower (k obs = 1.63 × 10-5 s-1) at 37 °C. The MCU-inhibitory properties of Os245 and Os245' are different (Os245 IC50 for MCU inhibition = 103 nM; Os245' IC50 for MCU inhibition = 2.3 nM), indicating that the axial ligands play an important role in their interactions with this channel. We further show that inhibition of the MCU by these complexes protects primary cortical neurons against lethal oxygen-glucose deprivation. When administered in vivo to mice (10 mg kg-1), Os245 and Os245' induce seizure-like behaviors in a manner similar to the ruthenium-based inhibitors. However, the onset of these seizures is delayed, a possible consequence of the slower ligand substitution kinetics for these osmium complexes. These findings support previous studies that demonstrate inhibition of the MCU is a promising therapeutic strategy for the treatment of ischemic stroke, but also highlight the need for improved drug delivery strategies to mitigate the pro-convulsant effects of this class of complexes before they can be implemented as therapeutic agents. Furthermore, the slower ligand substitution kinetics of the osmium analogues may afford new strategies for the development and modification of this class of MCU inhibitors.

17.
Angew Chem Int Ed Engl ; 62(6): e202214920, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515400

RESUMO

Inhibitors of the mitochondrial calcium uniporter (MCU) are valuable tools for studying the role of mitochondrial Ca2+ in various pathophysiological conditions. In this study, a new fluorogenic MCU inhibitor, RuOCou, is presented. This compound is an analogue of the known MCU inhibitor Ru265 that contains fluorescent axial coumarin carboxylate ligands. Upon aquation of RuOCou and release of the axial coumarin ligands, a simultaneous increase in its MCU-inhibitory activity and fluorescence intensity is observed. The fluorescence response of this compound enabled its aquation to be monitored in both HeLa cell lysates and live HeLa cells. This fluorogenic prodrug represents a potential theranostic MCU inhibitor that can be leveraged for the treatment of human diseases related to MCU activity.


Assuntos
Canais de Cálcio , Mitocôndrias , Humanos , Células HeLa , Ligantes , Mitocôndrias/metabolismo , Cálcio/metabolismo
18.
J Nucl Med ; 64(4): 549-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396453

RESUMO

Neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs) 2 and 5. Modified variants of somatostatin, the cognate ligand for SSTR2 and SSTR5, are used in treatment for metastatic and locoregional disease. Peptide receptor radionuclide therapy with 177Lu-DOTATATE (DOTA-octreotate), a ß-particle-emitting somatostatin derivative, has demonstrated survival benefit in patients with SSTR-positive NETs. Despite excellent results, a subset of patients has tumors that are resistant to treatment, and alternative agents are needed. Targeted α-particle therapy has been shown to kill tumors that are resistant to targeted ß-particle therapy, suggesting that targeted α-particle therapy may offer a promising treatment option for patients with 177Lu-DOTATATE-resistant disease. Although DOTATATE can chelate the clinically relevant α-particle-emitting radionuclide 225Ac, the labeling reaction requires high temperatures, and the resulting radioconjugate has suboptimal stability. Methods: We designed and synthesized MACROPATATE (MACROPA-octreotate), a novel radioconjugate capable of chelating 225Ac at room temperature, and assessed its in vitro and in vivo performance. Results: MACROPATATE demonstrated comparable affinity to DOTATATE (dissociation constant, 21 nM) in U2-OS-SSTR2, a SSTR2-positive transfected cell line. 225Ac-MACROPATATE demonstrated superior serum stability at 37°C over time compared with 225Ac-DOTATATE. Biodistribution studies demonstrated higher tumor uptake of 225Ac-MACROPATATE than of 225Ac-DOTATATE in mice engrafted with subcutaneous H69 NETs. Therapy studies showed that 225Ac-MACROPATATE exhibits significant antitumor and survival benefit compared with saline control in mice engrafted with SSTR-positive tumors. However, the increased accumulation of 225Ac-MACROPATATE in liver and kidneys and subsequent toxicity to these organs decreased its therapeutic index compared with 225Ac-DOTATATE. Conclusion: 225Ac-MACROPATATE and 225Ac-DOTATATE exhibit favorable therapeutic efficacy in animal models. Because of elevated liver and kidney accumulation and lower administered activity for dose-limiting toxicity of 225Ac-MACROPATATE, 225Ac-DOTATATE was deemed the superior agent for targeted α-particle peptide receptor radionuclide therapy.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Camundongos , Animais , Octreotida , Tumores Neuroendócrinos/metabolismo , Compostos Organometálicos/uso terapêutico , Distribuição Tecidual , Somatostatina/metabolismo , Receptores de Somatostatina/metabolismo , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
19.
Eur J Inorg Chem ; 26(35)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495596

RESUMO

To harness radiometals in clinical settings, a chelator forming a stable complex with the metal of interest and targets the desired pathological site is needed. Toward this goal, we previously reported a unique set of chelators that can stably bind to both large and small metal ions, via a conformational switch. Within this chelator class, py-macrodipa is particularly promising based on its ability to stably bind several medicinally valuable radiometals including large 132/135La3+, 213Bi3+, and small 44Sc3+. Here, we report a 10-step organic synthesis of its bifunctional analogue py-macrodipa-NCS, which contains an amine-reactive -NCS group that is amenable for bioconjugation reactions to targeting vectors. The hydrolytic stability of py-macordipa-NCS was assessed, revealing a half-life of 6.0 d in pH 9.0 aqueous buffer. This bifunctional chelator was then conjugated to a prostate-specific membrane antigen (PSMA)-binding moiety, yielding the bioconjugate py-macrodipa-PSMA, which was subsequently radiolabeled with large 132/135La3+ and small 47Sc3+, revealing efficient and quantitative complex formation. The resulting radiocomplexes were injected into mice bearing both PSMA-expressing and PSMA-non-expressing tumor xenografts to determine their biodistribution patterns, revealing delivery of both 132/135La3+ and 47Sc3+ to PSMA+ tumor sites. However, partial radiometal dissociation was observed, suggesting that py-macrodipa-PSMA needs further structural optimization.

20.
JACS Au ; 2(10): 2277-2294, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311838

RESUMO

There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 µM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA