RESUMO
Craniofacial morphology is extremely diversified within bat phylogeny, however growth and development of the palate in bats remains unstudied. The formation of both midline and bilateral orofacial clefts in laryngeally echolocating bats, morphologically similar to the syndromic and non-syndromic cleft palate in humans, are not well understood. Developmental series of prenatal samples (n = 128) and adults (n = 10) of eight bat species (two pteropodids, four rhinolophoids, and two yangochiropterans), and two non-bat mammals (Mus musculus and Erinaceus amurensis), were CT-scanned and cranial bones forming the upper jaw complex were three-dimensionally visualised to assess whether differences in palate development can be observed across bat phylogeny. Volumetric data of bones composing the upper jaw complex were measured to quantify palate growth. The premaxilla is relatively reduced in bats compared to other mammals and its shape is heterogeneous depending on the presence and type of orofacial cleft across bat phylogeny. The palatine process of premaxillary bones is lacking in pteropodids and yangochiropterans, whereas the premaxilla is a mobile structure which is only in contact caudally with the maxilla by a fibrous membrane or suture in rhinolophoids. In all bats, maxillary bones progressively extend caudally and palatine bones, in some cases split into three branches, extend caudally so that they are completely fused to another one medially prior to the birth. Ossification of the vomer and fusion of the maxillary and palatine bones occur earlier in rhinolophoids than in pteropodids and yangochiropterans. The vomer ossifies bilaterally from two different ossification centres in yangochiropterans, which is uncommon in other bats and non-bat mammals. Analysis of ontogenetic allometric trajectories of the upper jaw complex revealed faster development of maxillary, vomer, and palatine bones in yangochiropterans compared to other bats, especially rhinolophoids. Ancestral state reconstruction revealed that yangochiropterans have a higher magnitude of change in ossification rate compared to other bats and E. amurensis a lower magnitude compared to M. musculus and bats. This study provides new evidence of heterochronic shifts in craniofacial development and growth across bat phylogeny that can improve understanding of the developmental differences characterising nasal and oral emission strategies.
RESUMO
BACKGROUND: Isolating phylogenetic signal from morphological data is crucial for accurately merging fossils into the tree of life and for calibrating molecular dating. However, subjective character definition is a major limitation which can introduce biases that mislead phylogenetic inferences and divergence time estimation. The use of quantitative data, e.g., geometric morphometric (GMM; shape) data can allow for more objective integration of morphological data into phylogenetic inference. This systematic review describes the current state of the field in using continuous morphometric data (e.g., GMM data) for phylogenetic reconstruction and assesses the efficacy of these data compared to discrete characters using the PRISMA-EcoEvo v1.0. reporting guideline, and offers some pathways for approaching this task with GMM data. A comprehensive search string yielded 11,123 phylogenetic studies published in English up to Oct 2023 in the Web of Science database. Title and abstract screening removed 10,975 articles, and full-text screening was performed for 132 articles. Of these, a total of twelve articles met final inclusion criteria and were used for downstream analyses. RESULTS: Phylogenetic performance was compared between approaches that employed continuous morphometric and discrete morphological data. Overall, the reconstructed phylogenies did not show increased resolution or accuracy (i.e., benchmarked against molecular phylogenies) as continuous data alone or combined with discrete morphological datasets. CONCLUSIONS: An exhaustive search of the literature for existing empirical continuous data resulted in a total of twelve articles for final inclusion following title/abstract, and full-text screening. Our study was performed under a rigorous framework for systematic reviews, which showed that the lack of available comparisons between discrete and continuous data hinders our understanding of the performance of continuous data. Our study demonstrates the problem surrounding the efficacy of continuous data as remaining relatively intractable despite an exhaustive search, due in part to the difficulty in obtaining relevant comparisons from the literature. Thus, we implore researchers to address this issue with studies that collect discrete and continuous data sets with directly comparable properties (i.e., describing shape, or size).
Assuntos
Filogenia , Fósseis , AnimaisRESUMO
OBJECTIVE: Patellofemoral osteoarthritis (OA) may be more common in females than males. Reasons for this are not fully understood, but sex differences in patellar morphology may help explain this phenomenon. We quantified differences in patellar morphology between males and females in healthy and patellofemoral OA populations. DESIGN: A total of 97 (50F, 47M) healthy and 67 (40F, 27M) OA knees were scanned via computed tomography. OA individuals were on a waitlist for total knee replacement. Patella 3D models were segmented and 2D measurements were recorded: patellar width and height, lateral and medial facet width, and surface area. Medial and lateral facet surface topography was mapped using 81 points to describe 3D articular surface shape. Sex and group differences were assessed using Procrustes analysis of variance (ANOVA). Data were ordinated using Principal Component Analysis. RESULTS: Differences in patellar 2D measurements between healthy and OA individuals were smaller than were differences between males and females from healthy and OA groups. Sex and healthy/OA differences were most pronounced for medial facet shape, which featured a posteriorly-curving facet and taller, narrower facet shape in males compared to females. Lateral facet shape variance was higher in OA cohorts compared to healthy groups. CONCLUSIONS: Medial and lateral facet shapes showed different patterning of variation by sex and healthy/OA status. Lateral facet shape may be of interest in future models of OA risk in the patellofemoral joint, here showing increased magnitudes of variance associated with increased severity of disease (patellofemoral Kellgren and Lawrence score).
Assuntos
Osteoartrite do Joelho , Patela , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Pessoa de Meia-Idade , Idoso , Patela/diagnóstico por imagem , Patela/patologia , Fatores Sexuais , Estudos de Casos e Controles , Imageamento Tridimensional , Adulto , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/patologia , Caracteres SexuaisRESUMO
INTRODUCTION: The role of "luck" in determining individual exposure to health insults is a critical component of the processes that shape age-at-death distributions in mortality samples but is difficult to address using traditional bioarcheological analysis of skeletal materials. The present study introduces a computer simulation approach to modeling stochasticity's contribution to the mortality schedule of a simulated cohort. METHODS: The present study employs an agent-based model of 15,100 individuals across a 120 year period to examine the predictive value of birth frailty on age-at-death when varying the likelihood of exposure to health insults. RESULTS: Birth frailty, when accounting for varying exposure likelihood scenarios, was found to account for 18.7% of the observed variation in individual age-at-death. Analysis stratified by exposure likelihood demonstrated that birth frailty alone explains 10.2%-12.1% of the variation observed across exposure likelihood scenarios, with the stochasticity associated with exposure to health insults (i.e., severity of health insult) and mortality likelihood driving the majority of variation observed. CONCLUSIONS: Stochasticity of stressor exposure and intrinsic stressor severity are underappreciated but powerful drivers of mortality in this simulation. This study demonstrates the potential value of simulation modeling for bioarchaeological research.
Assuntos
Arqueologia , Processos Estocásticos , Humanos , Adulto , Idoso de 80 Anos ou mais , Idoso , Pessoa de Meia-Idade , Simulação por Computador , Criança , Lactente , Adolescente , Pré-Escolar , Adulto Jovem , Recém-Nascido , Mortalidade , Masculino , Feminino , FragilidadeRESUMO
OBJECTIVES: The present study investigated the association of skeletal indicator of stress presence with mean age-at-death as a means of understanding whether commonly studied indicators are indeed indicative of increased frailty. MATERIALS AND METHODS: Using a medieval Gaelic population from Ballyhanna (Co. Donegal), the present study assessed the association between skeletal indicators of stress and mean age-at-death using the Kaplan-Meier survival function with log rank test to determine whether these indicators were associated with younger age-at-death, and therefore increased frailty, in sub-adults only (0 to 18 years, N = 139) and through comparison to an all-ages cohort (N = 318). RESULTS: Only linear enamel hypoplasia was found to be associated with significantly decreased survivorship across the all-ages cohort but, conversely, was associated with increased survivorship when analysis was restricted to sub-adults. All other indicators assessed were associated with increased age-at-death for both all-age cohorts and sub-adult cohorts (cribra orbitalia), increased age-at-death when assessing all ages only (porotic hyperostosis and healed periosteal lesions); or were sufficiently rare in adults to prevent comparative analysis (stunting and micronutrient deficiency). Increased survivorship in individuals with higher numbers of co-morbid skeletal indicators was observed for both sub-adults alone and all age cohort. DISCUSSION: These findings suggest that these commonly recorded skeletal indicators may be more accurately viewed simply as records of stressor exposure and subsequent survival only, rather than providing evidence that these sub-adults are frailer than their similarly aged-at-death peers. Thus, the demographic and sociocultural context is essential to the interpretation of observed skeletal indicators of stress.
RESUMO
Compared to placentals, marsupial mammals have previously been considered primitive in terms of their reproductive biology. A new study suggests that, rather, marsupials represent a derived state of mammalian development, and the ancestral therian mammal developed like placentals do today.
Assuntos
Marsupiais , Animais , Gravidez , Feminino , Evolução Biológica , Mamíferos , Eutérios , Placenta , FilogeniaRESUMO
The relatively high level of morphological diversity in Australasian marsupials compared to that observed among American marsupials remains poorly understood. We undertake a comprehensive macroevolutionary analysis of ontogenetic allometry of American and Australasian marsupials to examine whether the contrasting levels of morphological diversity in these groups are reflected in their patterns of allometric evolution. We collate ontogenetic series for 62 species and 18 families of marsupials (n = 2091 specimens), spanning across extant marsupial diversity. Our results demonstrate significant lability of ontogenetic allometric trajectories among American and Australasian marsupials, yet a phylogenetically structured pattern of allometric evolution is preserved. Here we show that species diverging more than 65 million years ago converge in their patterns of ontogenetic allometry under animalivorous and herbivorous diets, and that Australasian marsupials do not show significantly greater variation in patterns of ontogenetic allometry than their American counterparts, despite displaying greater magnitudes of extant ecomorphological diversity.
Assuntos
Marsupiais , Animais , Marsupiais/genética , Evolução BiológicaRESUMO
BACKGROUND: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Assuntos
Canidae , Genoma Mitocondrial , Lobos , Cães , Animais , Feminino , Epigenoma , Filogenia , Austrália , Canidae/genética , Lobos/genética , CromossomosRESUMO
Altered neural crest cell (NCC) behaviour is an increasingly cited explanation for the domestication syndrome in animals. However, recent authors have questioned this explanation, while others cast doubt on whether domestication syndrome even exists. Here, we review published literature concerning this syndrome and the NCC hypothesis, together with recent critiques of both. We synthesize these contributions and propose a novel interpretation, arguing shared trait changes under ancient domestication resulted primarily from shared disruption of wild reproductive regimes. We detail four primary selective pathways for 'reproductive disruption' under domestication and contrast these succinct and demonstrable mechanisms with cryptic genetic associations posited by the NCC hypothesis. In support of our perspective, we illustrate numerous important ways in which NCCs contribute to vertebrate reproductive phenotypes, and argue it is not surprising that features derived from these cells would be coincidentally altered under major selective regime changes, as occur in domestication. We then illustrate several pertinent examples of Darwin's 'unconscious selection' in action, and compare applied selection and phenotypic responses in each case. Lastly, we explore the ramifications of reproductive disruption for wider evolutionary discourse, including links to wild 'self-domestication' and 'island effect', and discuss outstanding questions.
Assuntos
Domesticação , Crista Neural , Animais , Crista Neural/fisiologia , Reprodução , Evolução Biológica , FenótipoRESUMO
Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
RESUMO
Sex differences in the lifetime risk and expression of disease are well-known. Preclinical research targeted at improving treatment, increasing health span, and reducing the financial burden of health care, has mostly been conducted on male animals and cells. The extent to which sex differences in phenotypic traits are explained by sex differences in body weight remains unclear. We quantify sex differences in the allometric relationship between trait value and body weight for 363 phenotypic traits in male and female mice, recorded in >2 million measurements from the International Mouse Phenotyping Consortium. We find sex differences in allometric parameters (slope, intercept, residual SD) are common (73% traits). Body weight differences do not explain all sex differences in trait values but scaling by weight may be useful for some traits. Our results show sex differences in phenotypic traits are trait-specific, promoting case-specific approaches to drug dosage scaled by body weight in mice.
Assuntos
Caracteres Sexuais , Feminino , Camundongos , Masculino , Animais , Fenótipo , Peso Corporal , Tamanho CorporalRESUMO
Measures of fluctuating asymmetry (FA) have been adopted widely as an estimate of developmental instability. Arising from various sources of stress, developmental instability is associated with an organism's capacity to maintain fitness. The process of domestication has been framed as an environmental stress with human-specified parameters, suggesting that FA may manifest to a larger degree among domesticates compared to their wild relatives. This study used three-dimensional geometric morphometric landmark data to (a) quantify the amount of FA in the cranium of six domestic mammal species and their wild relatives and, (b) provide novel assessment of the commonalities and differences across domestic/wild pairs concerning the extent to which random variation arising from the developmental system assimilates into within-population variation. The majority of domestic mammals showed greater disparity for asymmetric shape, however, only two forms (Pig, Dog) showed significantly higher disparity as well as a higher degree of asymmetry compared to their wild counterparts (Wild Boar, Wolf). Contra to predictions, most domestic and wild forms did not show a statistically significant correspondence between symmetric shape variation and FA, however, a moderate correlation value was recorded for most pairs (r-partial least squares >0.5). Within pairs, domestic and wild forms showed similar correlation magnitudes for the relationship between the asymmetric and symmetric components. In domesticates, new variation may therefore retain a general, conserved pattern in the gross structuring of the cranium, whilst also being a source for response to selection on specific features.
Assuntos
Mamíferos , Crânio , Animais , Cães , Suínos , HumanosRESUMO
The neural crest hypothesis posits that selection for tameness resulted in mild alterations to neural crest cells during embryonic development, which directly or indirectly caused the appearance of traits associated with the "domestication syndrome" (DS). Although representing an appealing unitary explanation for the generation of domestic phenotypes, support for this hypothesis from morphological data and for the validity of the DS remains a topic of debate. This study used the frameworks of morphological integration and modularity to assess patterns that concern the embryonic origin of the skull and issues around the neural crest hypothesis. Geometric morphometric landmarks were used to quantify cranial trait interactions between six pairs of wild and domestic mammals, comprising representatives that express between five and 17 of the traits included in the DS, and examples from each of the pathways by which animals entered into relationships with humans. We predicted the presence of neural crest vs mesoderm modular structure to the cranium, and that elements in the neural crest module would show lower magnitudes of integration and higher disparity in domestic forms compared to wild forms. Our findings support modular structuring based on tissue origin (neural crest, mesoderm) modules, along with low module integration magnitudes for neural crest cell derived cranial elements, suggesting differential capacity for evolutionary response among those elements. Covariation between the neural crest and mesoderm modules accounted for major components of shape variation for most domestic/wild pairs. Contra to our predictions, however, we find domesticates share similar integration magnitudes to their wild progenitors, indicating that higher disparity in domesticates is not associated with magnitude changes to integration among either neural crest or mesoderm derived elements. Differences in integration magnitude among neural crest and mesoderm elements across species suggest that developmental evolution preserves a framework that promotes flexibility under the selection regimes of domestication.
RESUMO
Fluctuating asymmetry (random fluctuations between the left and right sides of the body) has been interpreted as an index to quantify both the developmental instabilities and homeostatic capabilities of organisms, linking the phenotypic and genotypic aspects of morphogenesis. However, studying the ontogenesis of fluctuating asymmetry has been limited to mostly model organisms in postnatal stages, missing prenatal trajectories of asymmetry that could better elucidate decoupled developmental pathways controlling symmetric bone elongation and thickening. In this study, we quantified the presence and magnitude of asymmetry during the prenatal development of bats, focusing on the humerus, a highly specialized bone adapted in bats to perform under multiple functional demands. We deconstructed levels of asymmetry by measuring the longitudinal and cross-sectional asymmetry of the humerus using a combination of linear measurements and geometric morphometrics. We tested the presence of different types of asymmetry and calculated the magnitude of size-controlled fluctuating asymmetry to assess developmental instability. Statistical support for the presence of fluctuating asymmetry was found for both longitudinal and cross-sectional asymmetry, explaining on average 16% of asymmetric variation. Significant directional asymmetry accounted for less than 6.6% of asymmetric variation. Both measures of fluctuating asymmetry remained relatively stable throughout ontogeny, but cross-sectional asymmetry was significantly different across developmental stages. Finally, we did not find a correspondence between developmental patterns of longitudinal and cross-sectional asymmetry, indicating that processes promoting symmetrical bone elongation and thickening work independently. We suggest various functional pressures linked to newborn bats' ecology associated with longitudinal (altricial flight capabilities) and cross-sectional (precocial clinging ability) developmental asymmetry differentially. We hypothesize that stable magnitudes of fluctuating asymmetry across development could indicate the presence of developmental mechanisms buffering developmental instability.
RESUMO
Bats are the second-most speciose group of mammals, comprising 20% of species diversity today. Their global explosion, representing one of the greatest adaptive radiations in mammalian history, is largely attributed to their ability of laryngeal echolocation and powered flight, which enabled them to conquer the night sky, a vast and hitherto unoccupied ecological niche. While there is consensus that powered flight evolved only once in the lineage, whether laryngeal echolocation has a single origin in bats or evolved multiple times independently remains disputed. Here, we present developmental evidence in support of laryngeal echolocation having multiple origins in bats. This is consistent with a non-echolocating bat ancestor and independent gain of echolocation in Yinpterochiroptera and Yangochiroptera, as well as the gain of primitive echolocation in the bat ancestor, followed by convergent evolution of laryngeal echolocation in Yinpterochiroptera and Yangochiroptera, with loss of primitive echolocation in pteropodids. Our comparative embryological investigations found that there is no developmental difference in the hearing apparatus between non-laryngeal echolocating bats (pteropodids) and terrestrial non-bat mammals. In contrast, the echolocation system is developed heterotopically and heterochronically in the two phylogenetically distant laryngeal echolocating bats (rhinolophoids and yangochiropterans), providing the first embryological evidence that the echolocation system evolved independently in these bats.
Assuntos
Evolução Biológica , Quirópteros/embriologia , Quirópteros/fisiologia , Ecolocação , Laringe/embriologia , Laringe/fisiologia , Animais , FilogeniaRESUMO
Bats use their forelimbs in different ways, but flight is the most notable example of morphological adaptation. Foraging and roosting specializations beyond flight have also been described in several bat lineages. Understanding postcranial evolution during the locomotory and foraging diversification of bats is fundamental to understanding bat evolution. We investigated whether different foraging and roosting behaviors influenced humeral cross-sectional shape and biomechanical variation, following Wolff's law of bone remodeling. The effect of body size and phylogenetic relatedness was also tested, in order to evaluate multiple sources of variation. Our results suggest strong ecological signal and no phylogenetic structuring in shape and biomechanical variation in humeral phenotypes. Decoupled modes of scaling of shape and biomechanical variation were consistently indicated across foraging and roosting behaviors, suggesting divergent allometric trajectories. Terrestrial locomoting and upstand roosting species showed unique patterns of shape and biomechanical variation across all our analyses, suggesting that these rare behaviors among bats place unique functional demands on the humerus, canalizing phenotypes. Our results suggest that complex and multiple adaptive pathways interplay in the postcranium, leading to the decoupling of different features and regions of skeletal elements optimized for different functional demands. Moreover, our results shed further light on the phenotypical diversification of the wing in bats and how adaptations besides flight could have shaped the evolution of the bat postcranium.
Assuntos
Quirópteros , Úmero , Animais , Remodelação Óssea , Membro Anterior , FilogeniaRESUMO
Bats show a remarkable ecological diversity that is reflected both in dietary and foraging guilds (FGs). Cranial ecomorphological adaptations linked to diet have been widely studied in bats, using a variety of anatomical, computational and mathematical approaches. However, foraging-related ecomorphological adaptations and the concordance between cranial and postcranial morphological adaptations remain unexamined in bats and limited to the interpretation of traditional aerodynamic properties of the wing (e.g. wing loading [WL] and aspect ratio [AR]). For this reason, the postcranial ecomorphological diversity in bats and its drivers remain understudied. Using 3D virtual modelling and geometric morphometrics (GMM), we explored the phylogenetic, ecological and biological drivers of humeral morphology in bats, evaluating the presence and magnitude of modularity and integration. To explore decoupled patterns of variation across the bone, we analysed whole-bone shape, diaphyseal and epiphyseal shape. We also tested whether traditional aerodynamic wing traits correlate with humeral shape. By studying 37 species from 20 families (covering all FGs and 85% of dietary guilds), we found similar patterns of variation in whole-bone and diaphyseal shape and unique variation patterns in epiphyseal shape. Phylogeny, diet and FG significantly correlated with shape variation at all levels, whereas size only had a significant effect on epiphyseal morphology. We found a significant phylogenetic signal in all levels of humeral shape. Epiphyseal shape significantly correlated with wing AR. Statistical support for a diaphyseal-epiphyseal modular partition of the humerus suggests a functional partition of shape variability. Our study is the first to show within-structure modular morphological variation in the appendicular skeleton of any living tetrapod. Our results suggest that diaphyseal shape correlates more with phylogeny, whereas epiphyseal shape correlates with diet and FG.
Assuntos
Comportamento Apetitivo/fisiologia , Quirópteros/anatomia & histologia , Comportamento Alimentar/fisiologia , Úmero/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Quirópteros/fisiologia , Filogenia , Crânio/anatomia & histologiaRESUMO
OBJECTIVES: The femur is a major weight-bearing bone that is variably loaded throughout growth as children transition through locomotory states prior to the attainment of a mature bipedal gait. Here, we document ontogenetic trends in femoral cross-sectional geometry (CSG) and explore how changes in loading regime may impact the structural arrangement of cortical bone along the length of the developing diaphysis. MATERIALS AND METHODS: Micro-CT scans of 110 immature femora were generated from a documented archaeological sample ranging in age from birth to 8.5 years old. CSG properties indicative of relative bone strength and bending rigidity were analyzed from cross-sections extracted at 35%, 50% and 65% of total intermetaphyseal length. RESULTS: Infants experience a marked redistribution of cortical bone between birth and 7 months facilitating a more advantageous mechanical structure for early load bearing behaviors as bone is displaced further from the section centroid. Early walkers are characterized by a mediolaterally reinforced cross-section that becomes more circular as gait continues to develop. DISCUSSION: During ontogeny the femur undergoes distinct morphological phases, which correspond with changes in loading regime. This study illustrates the importance of loading conditions in shaping immature bone morphology. Nonmechanical factors such as changes in hormonal environmental can also impact on this dynamic.
Assuntos
Desenvolvimento Infantil/fisiologia , Osso Cortical/anatomia & histologia , Fêmur/anatomia & histologia , Locomoção/fisiologia , Anatomia Transversal , Antropologia Física , Fenômenos Biomecânicos/fisiologia , Criança , Pré-Escolar , Osso Cortical/fisiologia , Fêmur/fisiologia , Humanos , Lactente , Recém-NascidoRESUMO
Morphological shifts observed in the fossil record of a lineage potentially indicate concomitant shifts in ecology of that lineage. Mekosuchine crocodiles of Cenozoic Australia display departures from the typical eusuchian body-plan both in the cranium and postcranium. Previous qualitative studies have suggested that these crocodiles had a more terrestrial habitus than extant crocodylians, yet the capacity of mekosuchine locomotion remains to be tested. Limb bone shape, such as diaphyseal cross-section and curvature, has been related to habitual use and locomotory function across a wide variety of taxa. Available specimens of mekosuchine limbs, primarily humeri, are distinctly columnar compared with those of extant crocodylians. Here we apply a quantitative approach to biomechanics in mekosuchine taxa using both geomorphic morphometric and finite element methods to measure bone shape and estimate locomotory stresses in a comparative context. Our results show mekosuchines appear to diverge from extant semi-aquatic saltwater and freshwater crocodiles in cross-sectional geometry of the diaphysis and generate different structural stresses between models that simulate sprawling and high-walk gaits. The extant crocodylians display generally rounded cross-sectional diaphyseal outlines, which may provide preliminary indication of resistance to torsional loads that predominate during sprawling gait, whereas mekosuchine humeri appear to vary between a series of elliptical outlines. Mekosuchine structural stresses are comparatively lower than those of the extant crocodylians and reduce under high-walk gait in some instances. This appears to be a function of bending moments induced by differing configurations of diaphyseal curvature. Additionally, the neutral axis of structural stresses is differently oriented in mekosuchines. This suggests a shift in the focus of biomechanical optimisation, from torsional to axial loadings. Our results lend quantitative support to the terrestrial habitus hypothesis in so far as they suggest that mekosuchine humeri occupied a different morphospace than that associated with the semi-aquatic habit. The exact adaptational trajectory of mekosuchines, however, remains to be fully quantified. Novel forms appear to emerge among mekosuchines during the late Cenozoic. Their adaptational function is considered here; possible applications include navigation of uneven terrain and burrowing.