Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001592

RESUMO

Polysaccharide structural complexity not only influences cell wall strength and extensibility but also hinders pathogenic and biotechnological attempts to saccharify the wall. In certain species and tissues, glucuronic acid side groups on xylan exhibit arabinopyranose or galactose decorations whose genetic and evolutionary basis is completely unknown, impeding efforts to understand their function and engineer wall digestibility. Genetics and polysaccharide profiling were used to identify the responsible loci in Arabidopsis and Eucalyptus from proposed candidates, while phylogenies uncovered a shared evolutionary origin. GH30-family endo-glucuronoxylanase activities were analysed by electrophoresis, and their differing specificities were rationalised by phylogeny and structural analysis. The newly identified xylan arabinopyranosyltransferases comprise an overlooked subfamily in the GT47-A family of Golgi glycosyltransferases, previously assumed to comprise mainly xyloglucan galactosyltransferases, highlighting an unanticipated adaptation of both donor and acceptor specificities. Further neofunctionalisation has produced a Myrtaceae-specific xylan galactosyltransferase. Simultaneously, GH30 endo-glucuronoxylanases have convergently adapted to overcome these decorations, suggesting a role for these structures in defence. The differential expression of glucuronoxylan-modifying genes across Eucalyptus tissues, however, hints at further functions. Our results demonstrate the rapid adaptability of biosynthetic and degradative carbohydrate-active enzyme activities, providing insight into plant-pathogen interactions and facilitating plant cell wall biotechnological utilisation.

2.
PLoS One ; 18(12): e0289581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127933

RESUMO

The structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called ß-galactoglucomannan (ß-GGM) was discovered in eudicot plants. This galactoglucomannan has ß-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed ß-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired ß-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from ß-GGM. In addition, we searched for candidate mannan ß-galactosyltransferases (MBGT) in non-eudicot angiosperms. Candidate AtMBGT1 orthologues from rice (OsGT47A-VII) and Amborella (AtrGT47A-VII) did not show MBGT activity in vivo. However, the AtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme (OsGT47A-VII) contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan ß-galactosyltransferase activity. Our results indicate that ß-GGM is likely to be a eudicot-specific mannan.


Assuntos
Arabidopsis , Magnoliopsida , Humanos , Mananas/química , Arabidopsis/genética , Galactosiltransferases/genética , Plantas , Filogenia
3.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823344

RESUMO

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Café/metabolismo , Xilanos/metabolismo , Oligossacarídeos/metabolismo , Parede Celular/metabolismo , Açúcares/metabolismo
4.
Curr Opin Struct Biol ; 79: 102564, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870276

RESUMO

Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos , Animais , Polissacarídeos/metabolismo , Membrana Celular/metabolismo , Transporte Biológico , Parede Celular/metabolismo
5.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929080

RESUMO

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Assuntos
Arabidopsis , Xilanos , Arabidopsis/genética , Parede Celular/química , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA