Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cortex ; 173: 34-48, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359511

RESUMO

Morphosyntactic assessments are important for characterizing individuals with nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard tests are subject to examiner bias and often fail to differentiate between nfvPPA and logopenic variant PPA (lvPPA). Moreover, relevant neural signatures remain underexplored. Here, we leverage natural language processing tools to automatically capture morphosyntactic disturbances and their neuroanatomical correlates in 35 individuals with nfvPPA relative to 10 healthy controls (HC) and 26 individuals with lvPPA. Participants described a picture, and ensuing transcripts were analyzed via part-of-speech tagging to extract sentence-related features (e.g., subordinating and coordinating conjunctions), verbal-related features (e.g., tense markers), and nominal-related features (e.g., subjective and possessive pronouns). Gradient boosting machines were used to classify between groups using all features. We identified the most discriminant morphosyntactic marker via a feature importance algorithm and examined its neural correlates via voxel-based morphometry. Individuals with nfvPPA produced fewer morphosyntactic elements than the other two groups. Such features robustly discriminated them from both individuals with lvPPA and HCs with an AUC of .95 and .82, respectively. The most discriminatory feature corresponded to subordinating conjunctions was correlated with cortical atrophy within the left posterior inferior frontal gyrus across groups (pFWE < .05). Automated morphosyntactic analysis can efficiently differentiate nfvPPA from lvPPA. Also, the most sensitive morphosyntactic markers correlate with a core atrophy region of nfvPPA. Our approach, thus, can contribute to a key challenge in PPA diagnosis.


Assuntos
Afasia Primária Progressiva , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Fala , Imageamento por Ressonância Magnética , Idioma , Atrofia
2.
Cortex ; 173: 96-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387377

RESUMO

Word deafness is a rare neurological disorder often observed following bilateral damage to superior temporal cortex and canonically defined as an auditory modality-specific deficit in word comprehension. The extent to which word deafness is dissociable from aphasia remains unclear given its heterogeneous presentation, and some have consequently posited that word deafness instead represents a stage in recovery from aphasia, where auditory and linguistic processing are affected to varying degrees and improve at differing rates. Here, we report a case of an individual (Mr. C) with bilateral temporal lobe lesions whose presentation evolved from a severe aphasia to an atypical form of word deafness, where auditory linguistic processing was impaired at the sentence level and beyond. We first reconstructed in detail Mr. C's stroke recovery through medical record review and supplemental interviewing. Then, using behavioral testing and multimodal neuroimaging, we documented a predominant auditory linguistic deficit in sentence and narrative comprehension-with markedly reduced behavioral performance and absent brain activation in the language network in the spoken modality exclusively. In contrast, Mr. C displayed near-unimpaired behavioral performance and robust brain activations in the language network for the linguistic processing of words, irrespective of modality. We argue that these findings not only support the view of word deafness as a stage in aphasia recovery but also further instantiate the important role of left superior temporal cortex in auditory linguistic processing.


Assuntos
Afasia , Surdez , Transtornos do Desenvolvimento da Linguagem , Acidente Vascular Cerebral , Humanos , Testes Neuropsicológicos , Afasia/etiologia , Acidente Vascular Cerebral/complicações , Lobo Temporal/patologia , Percepção Auditiva
3.
Brain Commun ; 6(1): fcae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370445

RESUMO

Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.

4.
Neurobiol Lang (Camb) ; 4(4): 536-549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946731

RESUMO

After a stroke, individuals with aphasia often recover to a certain extent over time. This recovery process may be dependent on the health of surviving brain regions. Leukoaraiosis (white matter hyperintensities on MRI reflecting cerebral small vessel disease) is one indication of compromised brain health and is associated with cognitive and motor impairment. Previous studies have suggested that leukoaraiosis may be a clinically relevant predictor of aphasia outcomes and recovery, although findings have been inconsistent. We investigated the relationship between leukoaraiosis and aphasia in the first year after stroke. We recruited 267 patients with acute left hemispheric stroke and coincident fluid attenuated inversion recovery MRI. Patients were evaluated for aphasia within 5 days of stroke, and 174 patients presented with aphasia acutely. Of these, 84 patients were evaluated at ∼3 months post-stroke or later to assess longer-term speech and language outcomes. Multivariable regression models were fit to the data to identify any relationships between leukoaraiosis and initial aphasia severity, extent of recovery, or longer-term aphasia severity. We found that leukoaraiosis was present to varying degrees in 90% of patients. However, leukoaraiosis did not predict initial aphasia severity, aphasia recovery, or longer-term aphasia severity. The lack of any relationship between leukoaraiosis severity and aphasia recovery may reflect the anatomical distribution of cerebral small vessel disease, which is largely medial to the white matter pathways that are critical for speech and language function.

5.
Neurobiol Lang (Camb) ; 4(4): 516-535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841966

RESUMO

Imaging studies of language processing in clinical populations can be complicated to interpret for several reasons, one being the difficulty of matching the effortfulness of processing across individuals or tasks. To better understand how effortful linguistic processing is reflected in functional activity, we investigated the neural correlates of task difficulty in linguistic and non-linguistic contexts in the auditory modality and then compared our findings to a recent analogous experiment in the visual modality in a different cohort. Nineteen neurologically normal individuals were scanned with fMRI as they performed a linguistic task (semantic matching) and a non-linguistic task (melodic matching), each with two levels of difficulty. We found that left hemisphere frontal and temporal language regions, as well as the right inferior frontal gyrus, were modulated by linguistic demand and not by non-linguistic demand. This was broadly similar to what was previously observed in the visual modality. In contrast, the multiple demand (MD) network, a set of brain regions thought to support cognitive flexibility in many contexts, was modulated neither by linguistic demand nor by non-linguistic demand in the auditory modality. This finding was in striking contradistinction to what was previously observed in the visual modality, where the MD network was robustly modulated by both linguistic and non-linguistic demand. Our findings suggest that while the language network is modulated by linguistic demand irrespective of modality, modulation of the MD network by linguistic demand is not inherent to linguistic processing, but rather depends on specific task factors.

6.
J Neurosurg Case Lessons ; 5(13)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37014023

RESUMO

BACKGROUND: Apraxia of speech is a disorder of speech-motor planning in which articulation is effortful and error-prone despite normal strength of the articulators. Phonological alexia and agraphia are disorders of reading and writing disproportionately affecting unfamiliar words. These disorders are almost always accompanied by aphasia. OBSERVATIONS: A 36-year-old woman underwent resection of a grade IV astrocytoma based in the left middle precentral gyrus, including a cortical site associated with speech arrest during electrocortical stimulation mapping. Following surgery, she exhibited moderate apraxia of speech and difficulty with reading and spelling, both of which improved but persisted 6 months after surgery. A battery of speech and language assessments was administered, revealing preserved comprehension, naming, cognition, and orofacial praxis, with largely isolated deficits in speech-motor planning and the spelling and reading of nonwords. LESSONS: This case describes a specific constellation of speech-motor and written language symptoms-apraxia of speech, phonological agraphia, and phonological alexia in the absence of aphasia-which the authors theorize may be attributable to disruption of a single process of "motor-phonological sequencing." The middle precentral gyrus may play an important role in the planning of motorically complex phonological sequences for production, independent of output modality.

7.
Cortex ; 158: 158-175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577212

RESUMO

Semantic variant primary progressive aphasia (svPPA) is a neurodegenerative disorder characterized by a loss of semantic knowledge in the context of anterior temporal lobe atrophy (left > right). Core features of svPPA include anomia and single-word comprehension impairment. Despite growing evidence supporting treatment for anomia in svPPA, there is a paucity of research investigating neural mechanisms supporting treatment-induced gains and generalization to untrained items. In the current study, we examined the relation between the structural integrity of brain parenchyma (tissue inclusive of gray and white matter) at pre-treatment and treatment outcomes for trained and untrained items in a group of 19 individuals with svPPA who completed lexical retrieval treatment. Two structural neuroimaging approaches were used: an exploratory, whole-brain, voxel-wise approach and an a priori region of interest (ROI) approach. Based on previous research, bilateral temporal (inferior, middle, and superior temporal gyri), parietal (supramarginal and angular gyri), frontal (inferior and middle frontal gyri) and medial temporal (hippocampus and parahippocampal gyri) ROIs were selected from the Automated Anatomical Labeling (AAL) atlas. Analyses revealed improved naming of trained items and generalization to untrained items following treatment, providing converging evidence that individuals with svPPA can benefit from treatment for anomia. Better post-treatment naming accuracy was associated with the structural integrity of inferior parietal cortex and the hippocampus. Specifically, improved naming of trained items was related to the left supramarginal (phonological processing) and angular gyri (phonological and semantic processing), and improved naming of trained and untrained items was related to the left hippocampus (episodic, context-based memory). Future research should examine treatment outcomes in relation to pre-treatment functional and structural connectivity as well as changes in network dynamics following speech-language intervention to further elucidate the neural mechanisms underlying treatment response in svPPA and related disorders.


Assuntos
Afasia Primária Progressiva , Semântica , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/terapia , Afasia Primária Progressiva/complicações , Anomia/diagnóstico por imagem , Anomia/terapia , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento
8.
Brain ; 146(3): 1021-1039, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388420

RESUMO

Most individuals who experience aphasia after a stroke recover to some extent, with the majority of gains taking place in the first year. The nature and time course of this recovery process is only partially understood, especially its dependence on lesion location and extent, which are the most important determinants of outcome. The aim of this study was to provide a comprehensive description of patterns of recovery from aphasia in the first year after stroke. We recruited 334 patients with acute left hemisphere supratentorial ischaemic or haemorrhagic stroke and evaluated their speech and language function within 5 days using the Quick Aphasia Battery (QAB). At this initial time point, 218 patients presented with aphasia. Individuals with aphasia were followed longitudinally, with follow-up evaluations of speech and language at 1 month, 3 months, and 1 year post-stroke, wherever possible. Lesions were manually delineated based on acute clinical MRI or CT imaging. Patients with and without aphasia were divided into 13 groups of individuals with similar, commonly occurring patterns of brain damage. Trajectories of recovery were then investigated as a function of group (i.e. lesion location and extent) and speech/language domain (overall language function, word comprehension, sentence comprehension, word finding, grammatical construction, phonological encoding, speech motor programming, speech motor execution, and reading). We found that aphasia is dynamic, multidimensional, and gradated, with little explanatory role for aphasia subtypes or binary concepts such as fluency. Patients with circumscribed frontal lesions recovered well, consistent with some previous observations. More surprisingly, most patients with larger frontal lesions extending into the parietal or temporal lobes also recovered well, as did patients with relatively circumscribed temporal, temporoparietal, or parietal lesions. Persistent moderate or severe deficits were common only in patients with extensive damage throughout the middle cerebral artery distribution or extensive temporoparietal damage. There were striking differences between speech/language domains in their rates of recovery and relationships to overall language function, suggesting that specific domains differ in the extent to which they are redundantly represented throughout the language network, as opposed to depending on specialized cortical substrates. Our findings have an immediate clinical application in that they will enable clinicians to estimate the likely course of recovery for individual patients, as well as the uncertainty of these predictions, based on acutely observable neurological factors.


Assuntos
Afasia , Acidente Vascular Cerebral , Humanos , Afasia/patologia , Lobo Temporal/patologia , Fala , Idioma , Imageamento por Ressonância Magnética
9.
J Neurosurg ; 138(3): 847-857, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932264

RESUMO

OBJECTIVE: Broca's aphasia is a syndrome of impaired fluency with retained comprehension. The authors used an unbiased algorithm to examine which neuroanatomical areas are most likely to result in Broca's aphasia following surgical lesions. METHODS: Patients were prospectively evaluated with standardized language batteries before and after surgery. Broca's area was defined anatomically as the pars opercularis and triangularis of the inferior frontal gyrus. Broca's aphasia was defined by the Western Aphasia Battery language assessment. Resections were outlined from MRI scans to construct 3D volumes of interest. These were aligned using a nonlinear transformation to Montreal Neurological Institute brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm was used to test for areas statistically associated with Broca's aphasia when incorporated into a resection, as well as areas associated with deficits in fluency independent of Western Aphasia Battery classification. Postoperative MRI scans were reviewed in blinded fashion to estimate the percentage resection of Broca's area compared to areas identified using the VLSM algorithm. RESULTS: A total of 289 patients had early language evaluations, of whom 19 had postoperative Broca's aphasia. VLSM analysis revealed an area that was highly correlated (p < 0.001) with Broca's aphasia, spanning ventral sensorimotor cortex and supramarginal gyri, as well as extending into subcortical white matter tracts. Reduced fluency scores were significantly associated with an overlapping region of interest. The fluency score was negatively correlated with fraction of resected precentral, postcentral, and supramarginal components of the VLSM area. CONCLUSIONS: Broca's aphasia does not typically arise from neurosurgical resections in Broca's area. When Broca's aphasia does occur after surgery, it is typically in the early postoperative period, improves by 1 month, and is associated with resections of ventral sensorimotor cortex and supramarginal gyri.


Assuntos
Afasia de Broca , Área de Broca , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Lobo Frontal/patologia
10.
J Neurosurg ; 138(5): 1403-1410, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208435

RESUMO

OBJECTIVE: Electrocortical stimulation mapping (ECS) is widely used to identify essential language areas, but sentence-level processing has rarely been investigated. METHODS: While undergoing awake surgery in the dominant left hemisphere, 6 subjects were asked to comprehend sentences varying in their demands on syntactic processing. RESULTS: In all 6 subjects, stimulation of the inferior frontal gyrus disrupted comprehension of passive sentences, which critically depend on syntactic processing to correctly assign grammatical roles, without disrupting comprehension of simpler tasks. In 4 of the 6 subjects, these sites were localized to the pars opercularis. Sentence comprehension was also disrupted by stimulation of other perisylvian sites, but in a more variable manner. CONCLUSIONS: These findings suggest that there may be language regions that differentially contribute to sentence processing and which therefore are best identified using sentence-level tasks. The functional consequences of resecting these sites remain to be investigated.


Assuntos
Neoplasias Encefálicas , Compreensão , Humanos , Compreensão/fisiologia , Vigília , Mapeamento Encefálico , Idioma , Imageamento por Ressonância Magnética
11.
Perspect ASHA Spec Interest Groups ; 7(5): 1-11, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311052

RESUMO

Purpose: Community aphasia groups serve an important purpose in enhancing the quality of life and psychosocial well-being of individuals with chronic aphasia. Here, we describe the Aphasia Group of Middle Tennessee, a community aphasia group with a 17-year (and continuing) history, housed within Vanderbilt University Medical Center in Nashville, Tennessee. Method: We describe in detail the history, philosophy, design, curriculum, and facilitation model of this group. We also present both quantitative and qualitative outcomes from group members and their loved ones. Results: Group members and their loved ones alike indicated highly positive assessments of the format and value of the Aphasia Group of Middle Tennessee. Conclusion: By characterizing in detail the successful Aphasia Group of Middle Tennessee, we hope this can serve as a model for clinicians interested in starting their own community aphasia groups, in addition to reaching individuals living with chronic aphasia and their loved ones through the accessible and aphasia-friendly materials provided with this clinical focus article.

12.
Brain Sci ; 12(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448023

RESUMO

Although researchers have recognized the need to better account for the heterogeneous perceptual speech characteristics among talkers with the same disease, guidance on how to best establish such dysarthria subgroups is currently lacking. Therefore, we compared subgroup decisions of two data-driven approaches based on a cohort of talkers with Huntington's disease (HD): (1) a statistical clustering approach (STATCLUSTER) based on perceptual speech characteristic profiles and (2) an auditory free classification approach (FREECLASS) based on listeners' similarity judgments. We determined the amount of overlap across the two subgrouping decisions and the perceptual speech characteristics driving the subgrouping decisions of each approach. The same speech samples produced by 48 talkers with HD were used for both grouping approaches. The STATCLUSTER approach had been conducted previously. The FREECLASS approach was conducted in the present study. Both approaches yielded four dysarthria subgroups, which overlapped between 50% to 78%. In both grouping approaches, overall bizarreness and speech rate characteristics accounted for the grouping decisions. In addition, voice abnormalities contributed to the grouping decisions in the FREECLASS approach. These findings suggest that apart from overall bizarreness ratings, indexing dysarthria severity, speech rate and voice characteristics may be important features to establish dysarthria subgroups in HD.

13.
Neurosci Biobehav Rev ; 136: 104588, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259422

RESUMO

We conducted a systematic review and meta-analysis of 30 functional magnetic resonance imaging studies investigating processing of musical rhythms in neurotypical adults. First, we identified a general network for musical rhythm, encompassing all relevant sensory and motor processes (Beat-based, rest baseline, 12 contrasts) which revealed a large network involving auditory and motor regions. This network included the bilateral superior temporal cortices, supplementary motor area (SMA), putamen, and cerebellum. Second, we identified more precise loci for beat-based musical rhythms (Beat-based, audio-motor control, 8 contrasts) in the bilateral putamen. Third, we identified regions modulated by beat based rhythmic complexity (Complexity, 16 contrasts) which included the bilateral SMA-proper/pre-SMA, cerebellum, inferior parietal regions, and right temporal areas. This meta-analysis suggests that musical rhythm is largely represented in a bilateral cortico-subcortical network. Our findings align with existing theoretical frameworks about auditory-motor coupling to a musical beat and provide a foundation for studying how the neural bases of musical rhythm may overlap with other cognitive domains.


Assuntos
Música , Adulto , Percepção Auditiva , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética
14.
Data (Basel) ; 7(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37908282

RESUMO

Purpose: Auditory-perceptual rating of connected speech in aphasia (APROCSA) involves trained listeners rating a large number of perceptual features of speech samples, and has shown promise as an approach for quantifying expressive speech and language function in individuals with aphasia. The aim of this study was to obtain consensus ratings for a diverse set of speech samples, which can then be used as training materials for learning the APROCSA system. Method: Connected speech samples were recorded from six individuals with chronic post-stroke aphasia. A segment containing the first five minutes of participant speech was excerpted from each sample, and 27 features were rated on a five-point scale by five researchers. The researchers then discussed each feature in turn to obtain consensus ratings. Results: Six connected speech samples are made freely available for research, education, and clinical uses. Consensus ratings are reported for each of the 27 features, for each speech sample. Discrepancies between raters were resolved through discussion, yielding consensus ratings that can be expected to be more accurate than mean ratings. Conclusions: The dataset will provide a useful resource for scientists, students, and clinicians to learn how to evaluate aphasic speech samples with an auditory-perceptual approach.

15.
Neurobiol Lang (Camb) ; 2(2): 202-225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34585141

RESUMO

In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca's area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.

16.
Neurobiol Lang (Camb) ; 2(1): 22-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884373

RESUMO

Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. We carried out a systematic review and meta-analysis of all articles published between 1995 and early 2020 that have described functional imaging studies of six or more individuals with post-stroke aphasia, and have reported analyses bearing on neuroplasticity of language processing. Each study was characterized and appraised in detail, with particular attention to three critically important methodological issues: task performance confounds, contrast validity, and correction for multiple comparisons. We identified 86 studies describing a total of 561 relevant analyses. We found that methodological limitations related to task performance confounds, contrast validity, and correction for multiple comparisons have been pervasive. Only a few claims about language processing in individuals with aphasia are strongly supported by the extant literature: first, left hemisphere language regions are less activated in individuals with aphasia than neurologically normal controls, and second, in cohorts with aphasia, activity in left hemisphere language regions, and possibly a temporal lobe region in the right hemisphere, is positively correlated with language function. There is modest, equivocal evidence for the claim that individuals with aphasia differentially recruit right hemisphere homotopic regions, but no compelling evidence for differential recruitment of additional left hemisphere regions or domain-general networks. There is modest evidence that left hemisphere language regions return to function over time, but no compelling longitudinal evidence for dynamic reorganization of the language network.

17.
Neurocase ; 27(1): 97-105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33666124

RESUMO

Unexpected absence of aphasia after left-hemisphere perisylvian damage is often assumed to reflect right-hemisphere language lateralization, but other potential explanations include bilateral language representation, or sparing of critical left-hemisphere regions due to individual variability. We describe the case of a left-handed gentleman who presented with no aphasia after a left temporal hemorrhage. We used functional neuroimaging to determine how his language network had been spared. In this case, we observed unequivocal right-hemisphere lateralization of language function, explaining his lack of aphasia. We discuss the variability of language organization and highlight outstanding questions about the implications of damage in different scenarios.


Assuntos
Afasia , Idioma , Afasia/diagnóstico por imagem , Afasia/etiologia , Lateralidade Funcional , Neuroimagem Funcional , Hemorragia , Humanos , Imageamento por Ressonância Magnética
18.
Cereb Cortex ; 30(2): 618-627, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31241149

RESUMO

Speech perception involves mapping from a continuous and variable acoustic speech signal to discrete, linguistically meaningful units. However, it is unclear where in the auditory processing stream speech sound representations cease to be veridical (faithfully encoding precise acoustic properties) and become categorical (encoding sounds as linguistic categories). In this study, we used functional magnetic resonance imaging and multivariate pattern analysis to determine whether tonotopic primary auditory cortex (PAC), defined as tonotopic voxels falling within Heschl's gyrus, represents one class of speech sounds-vowels-veridically or categorically. For each of 15 participants, 4 individualized synthetic vowel stimuli were generated such that the vowels were equidistant in acoustic space, yet straddled a categorical boundary (with the first 2 vowels perceived as [i] and the last 2 perceived as [i]). Each participant's 4 vowels were then presented in a block design with an irrelevant but attention-demanding level change detection task. We found that in PAC bilaterally, neural discrimination between pairs of vowels that crossed the categorical boundary was more accurate than neural discrimination between equivalently spaced vowel pairs that fell within a category. These findings suggest that PAC does not represent vowel sounds veridically, but that encoding of vowels is shaped by linguistically relevant phonemic categories.


Assuntos
Córtex Auditivo/fisiologia , Fonética , Percepção da Fala/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Discriminação Psicológica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
19.
J Speech Lang Hear Res ; 62(11): 3937-3946, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31756153

RESUMO

Purpose Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. To make progress in characterizing the nature of this process, we need feasible, reliable, and valid methods for identifying language regions of the brain in individuals with aphasia. This article reviews 3 recent studies from our lab in which we have developed and validated several novel functional magnetic resonance imaging paradigms for language mapping in aphasia. Method In the 1st study, we investigated the reliability and validity of 4 language mapping paradigms in neurologically normal older adults. In the 2nd study, we developed a novel adaptive semantic matching paradigm and assessed its feasibility, reliability, and validity in individuals with and without aphasia. In the 3rd study, we developed and evaluated 2 additional adaptive paradigms-rhyme judgment and syllable counting-for mapping phonological encoding regions. Results We found that the adaptive semantic matching paradigm could be performed by most individuals with aphasia and yielded reliable and valid maps of core perisylvian language regions in each individual participant. The psychometric properties of this paradigm were superior to those of other commonly used paradigms such as narrative comprehension and picture naming. The adaptive rhyme judgment paradigm was capable of identifying fronto-parietal phonological encoding regions in individual participants. Conclusion Adaptive language mapping paradigms offer a promising approach for future research on the neural basis of recovery from aphasia. Presentation Video https://doi.org/10.23641/asha.10257584.


Assuntos
Afasia/diagnóstico por imagem , Afasia/fisiopatologia , Mapeamento Encefálico , Idioma , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Previsões , Humanos , Fonética , Reprodutibilidade dos Testes , Semântica
20.
Curr Neurol Neurosci Rep ; 19(8): 53, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31250125

RESUMO

PURPOSE OF REVIEW: Aphasia is often characterized in terms of subtype and severity, yet these constructs have limited explanatory power, because aphasia is inherently multifactorial both in its neural substrates and in its symptomatology. The purpose of this review is to survey current and emerging multivariate approaches to understanding aphasia. RECENT FINDINGS: Techniques such as factor analysis and principal component analysis have been used to define latent underlying factors that can account for performance on batteries of speech and language tests, and for characteristics of spontaneous speech production. Multivariate lesion-symptom mapping has been shown to outperform univariate approaches to lesion-symptom mapping for identifying brain regions where damage is associated with specific speech and language deficits. It is increasingly clear that structural damage results in functional changes in wider neural networks, which mediate speech and language outcomes. Multivariate statistical approaches are essential for understanding the complex relationships between the neural substrates of aphasia, and resultant profiles of speech and language function.


Assuntos
Afasia/etiologia , Encéfalo/fisiopatologia , Idoso , Mapeamento Encefálico , Feminino , Humanos , Idioma , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fala/fisiologia , Acidente Vascular Cerebral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA