RESUMO
Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed higher levels of eIF4A1/2 compared with mesenchymal stem cells. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like (-)-DDR, (±)-DDR, and (-)-Roc, (±)-DDR-acetate increased γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both (-)-DDR- and (-)-Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.
Assuntos
Fator de Iniciação 4A em Eucariotos , Osteossarcoma , Cães , Animais , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/metabolismo , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Benzofuranos/farmacologiaRESUMO
Estrogen receptors are essential pharmacological targets for treating hormonal disorders and estrogen-dependent malignancies. Selective activation of estrogen receptor (ER) ß is hypothesized to provide therapeutic benefit with reduced risk of unwanted estrogenic side-effects associated with ERα activity. However, activating ERß without activating α is challenging due to the high sequence and structural homology between the receptor subtypes. We assessed the impact of structural modifications to the parent compound OSU-ERß-12 on receptor subtype binding selectivity using cell-free binding assays. Functional selectivity was evaluated by transactivation in HEK-293 cells overexpressing human or murine estrogen receptors. In vivo selectivity was examined through the uterotrophic effects of the analogs after oral administration in estrogen-naïve female mice. Furthermore, we evaluated the in vivo pharmacokinetics of the analogs following single dose IV and oral administration. Regarding selectivity, a single compound exhibited greater functional selectivity than OSU-ERß-12 for human ERß. However, like others in the meta-carborane series, its poor in vivo pharmacokinetics limit its suitability for further development. Surprisingly, and at odds with their pharmacokinetic and in vitro human activity data, most analogs potently induced uterotrophic effects in estrogen-naïve female mice. Further investigation of activity in HEK293 cells expressing murine estrogen receptors revealed species-specific differences in the ER-subtype selectivity of these analogs. Our findings highlight species-specific receptor pharmacology and the challenges it poses to characterizing developmental therapeutics in preclinical species. Significance Statement This study investigates para- and meta-substituted carborane analogs targeting estrogen receptors, revealing the greater selectivity of carborane analogs for human ERß compared to the mouse homolog. These findings shed light on the intricacies of using preclinical species in drug development to predict human pharmacology. The report also provides insights for the refinement and optimization of carborane analogs as potential therapeutic agents for estrogen-related disease states.
RESUMO
Background: Among women, breast cancer is the leading cause of cancer-related death worldwide. Estrogen receptor α-positive (ERα+) breast cancer accounts for 70% of all breast cancer subtypes. Although ERα+ breast cancer initially responds to estrogen deprivation or blockade, the emergence of resistance compels the use of more aggressive therapies. While ERα is a driver in ERα+ breast cancer, ERß plays an inhibitory role in several different cancer types. To date, the lack of highly selective ERß agonists without ERα activity has limited the exploration of ERß activation as a strategy for ERα+ breast cancer. Methods: We measured the expression levels of ESR1 and ESR2 genes in immortalized mammary epithelial cells and different breast cancer cell lines. The viability of ERα+ breast cancer cell lines upon treatments with specific ERß agonists, including OSU-ERb-12 and LY500307, was assessed. The specificity of the ERß agonists, OSU-ERb-12 and LY500307, was confirmed by reporter assays. The effects of ERß agonists on cell proliferation, cell cycle, apoptosis, colony formation, cell migration, and expression of tumor suppressor proteins were analyzed. The expression of ESR2 and genes containing ERE-AP1 composite response elements was examined in ERα+ human breast cancer samples to determine the correlation between ESR2 expression and overall survival and that of putative ESR2-regulated genes. Results: In this study, we demonstrate the efficacy of highly selective ERß agonists in ERα+ breast cancer cell lines and drug-resistant derivatives. ERß agonists blocked cell proliferation, migration, and colony formation and induced apoptosis and S and/or G2/M cell-cycle arrest of ERα+ breast cancer cell lines. Also, increases in the expression of the key tumor suppressors FOXO1 and FOXO3a were noted. Importantly, the strong synergy between ERß agonists and ERα antagonists suggested that the efficacy of ERß agonists is maximized by combination with ERα blockade. Lastly, ESR2 (ERß gene) expression was negatively correlated with ESR1 (ERα gene) and CCND1 RNA expression in human metastatic ERα+/HER2- breast cancer samples. Conclusion: Our results demonstrate that highly selective ERß agonists attenuate the viability of ERα+ breast cancer cell lines in vitro and suggest that this therapeutic strategy merits further evaluation for ERα+ breast cancer.
RESUMO
Selective agonism of the estrogen receptor (ER) subtypes, ERα and ERß, has historically been difficult to achieve due to the high degree of ligand-binding domain structural similarity. Multiple efforts have focused on the use of classical organic scaffolds to model 17ß-estradiol geometry in the design of ERß selective agonists, with several proceeding to various stages of clinical development. Carborane scaffolds offer many unique advantages including the potential for novel ligand/receptor interactions but remain relatively unexplored. We synthesized a series of para-carborane estrogen receptor agonists revealing an ERß selective structure-activity relationship. We report ERß agonists with low nanomolar potency, greater than 200-fold selectivity for ERß over ERα, limited off-target activity against other nuclear receptors, and only sparse CYP450 inhibition at very high micromolar concentrations. The pharmacological properties of our para-carborane ERß selective agonists measure favorably against clinically developed ERß agonists and support further evaluation of carborane-based selective estrogen receptor modulators.
Assuntos
Compostos de Boro/farmacologia , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Compostos de Boro/síntese química , Compostos de Boro/química , Relação Dose-Resposta a Droga , Estrogênios/síntese química , Estrogênios/química , Células HEK293 , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
As genome mining becomes a more widely used approach to identify bacterial natural products, the challenge of matching biosynthetic gene clusters to their cognate secondary metabolites has become more apparent. Bioinformatic platforms such as AntiSMASH have made great progress in predicting chemical structures from genetic information, however the predicted structures are often incomplete. This complicates identifying the predicted compounds by mass spectrometry. Secondary metabolites produced by cyanobacteria represent a unique opportunity for bridging this gap. Cultured cyanobacteria incorporate inorganic nitrogen provided in chemically defined media into all nitrogen-containing secondary metabolites. Thus, stable isotope labeling with 15N labeled nitrate and subsequent comparative metabolomics can be used to match biosynthetic gene clusters to their cognate compounds in cell extracts. Analysis of the sequenced genome of Nostoc sp. UIC 10630 identified six biosynthetic gene clusters predicted to encode the production of a secondary metabolite with at least one nitrogen atom. Comparative metabolomic analysis of the 15N labeled and unlabeled cell extracts revealed four nitrogen containing compounds that contained the same number of nitrogen atoms as were predicted in the biosynthetic gene clusters. Two of the four compounds were new secondary metabolites, and their structures were elucidated by NMR, HRESIMS, and MS/MS.
Assuntos
Extratos Celulares/química , Cianobactérias/metabolismo , Genoma Bacteriano/genética , Metabolômica/métodos , Isótopos de Nitrogênio/metabolismo , Sequência de Bases , Produtos Biológicos/química , Vias Biossintéticas , Técnicas de Cultura de Células , Cianobactérias/química , Glicopeptídeos/análise , Marcação por Isótopo/métodos , Lipopeptídeos/análise , Espectroscopia de Ressonância Magnética , Família Multigênica , Isótopos de Nitrogênio/química , Oligopeptídeos/análise , Espectrometria de Massas em TandemRESUMO
Allosteric HIV-1 integrase inhibitors (ALLINIs) are a new class of potential antiretroviral therapies with a unique mechanism of action and drug resistance profile. To further extend this class of inhibitors via a scaffold hopping approach, we have synthesized a series of analogues possessing an isoquinoline ring system. Lead compound 6l binds in the v-shaped pocket at the IN dimer interface and is highly selective for promoting higher-order multimerization of inactive IN over inhibiting IN-LEDGF/p75 binding. Importantly, 6l potently inhibited HIV-1NL4-3 (A128T IN), which confers marked resistance to archetypal quinoline-based ALLINIs. Thermal degradation studies indicated that at elevated temperatures the acetic acid side chain of specific isoquinoline derivatives undergo decarboxylation reactions. This reactivity has implications for the synthesis of various ALLINI analogues.
RESUMO
Cyanobacteria are a source of chemically diverse metabolites with potential medicinal and biotechnological applications. Rapid identification of compounds is central to expedite the natural product discovery process. Mass spectrometry has been shown to be an important tool for dereplication of complex natural product samples. In addition, chromatographic separation and complementary spectroscopic analysis (e.g., UV) can enhance the confidence of the dereplication process. Here, we applied a droplet-liquid microjunction-surface sampling probe (droplet probe) coupled with UPLC-PDA-HRMS-MS/MS to identify two new natural products in situ from the freshwater strain Calothrix sp. UIC 10520. This allowed us to prioritize this strain for chemical investigation based on the presence of new metabolites very early in our discovery process, saving both time and resources. Subsequently, calothrixamides A (1) and B (2) were isolated from large-scale cultures, and the structures were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations were determined by a combination of chemical degradation reactions, derivatization methods (Mosher's, Marfey's, and phenylglycine methyl ester), and J-based configurational analysis. Calothrixamides showed no cytotoxic activity against the MDA-MB-435, MDA-MB-231, and OVCAR3 cancer cell lines. They represent the first functionalized long-chain fatty acid amides reported from the Calothrix genus and from a freshwater cyanobacterium.
Assuntos
Amidas/isolamento & purificação , Cianobactérias/metabolismo , Ácidos Graxos/isolamento & purificação , Microbiologia da Água , Amidas/química , Amidas/farmacologia , Linhagem Celular Tumoral , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Humanos , Espectroscopia de Ressonância MagnéticaRESUMO
The human 20S proteasome inhibitor scytonemide A (1), a macrocyclic imine originally isolated from the cyanobacterium Scytonema hofmanni, was synthesized via a biomimetic solid-phase peptide synthesis (SPPS) approach employing the Weinreb AM resin. Utilizing this approach, cyclization of the protected heptapeptide via formation of the imine bond occurred spontaneously upon cleavage from the resin in the presence of a reducing agent and subsequent aqueous workup. The final deprotection step necessary to produce the natural product was accomplished under slightly basic conditions, facilitating cleavage of the silyl ether group while leaving the macrocycle intact. Purification of the synthetic scytonemide A was accomplished via normal-phase flash column chromatography, potentially facilitating larger scale preparation of the compound necessary for future mechanistic and SAR studies. The structure of the target compound was confirmed by NMR spectroscopy, which also shed light on differences in the spectroscopic data obtained for the synthetic and natural scytonemide A samples for some of the amide and alcohol signals in the 1H NMR spectrum.