Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 379(6639): 1332-1335, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996200

RESUMO

The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of processes that force the CO2 flux variability. In this study, by examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance. They cause two to three times larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has substantial implications for our understanding and modeling of global climate-carbon cycle feedbacks.

2.
Nature ; 562(7725): 110-114, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283105

RESUMO

Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7-9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982-2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.


Assuntos
Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Estações do Ano , Temperatura , Simulação por Computador , Mapeamento Geográfico , Transpiração Vegetal , Plantas
3.
Artigo em Inglês | MEDLINE | ID: mdl-30297462

RESUMO

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Niño 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 ± 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Niño weakened the tropical land carbon sink. We estimate that the El Niño contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Niño in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Niño had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , El Niño Oscilação Sul , Temperatura , Atmosfera/análise , Modelos Teóricos
4.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27447350

RESUMO

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Biodiversidade , Ecossistema , Árvores
5.
Sci Total Environ ; 468-469 Suppl: S31-5, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23582410

RESUMO

The globally averaged mass balance of glaciers and ice caps is negative, but an anomalous gain of mass has been suggested for the Karakoram glaciers of the western Himalaya. Changes in the winter synoptic patterns can influence the amount and seasonality of Himalayan snowfall and consequently influence the mass balance of regional glaciers. We use a clustering method to analyse the sea level pressure patterns which most influence Karakorum snow fall and determine if the frequency of these synoptic patterns changes in future scenarios. A regional climate model is used to assess changes in severity and frequency of snowfall events. A number of weather patterns influence winter precipitation over the western Himalaya, including westerly disturbances, and indicate an increase in frequency of occurrence up to 2100. Thus, the Karakorum glaciers may continue to grow, or decline at a slower rate, compared with those across the rest of the Himalayas.


Assuntos
Camada de Gelo , Recursos Hídricos/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Clima , Mudança Climática , Modelos Teóricos , Estações do Ano
6.
Sci Total Environ ; 468-469 Suppl: S18-30, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23541400

RESUMO

This study presents the possible regional climate change over South Asia with a focus over India as simulated by three very high resolution regional climate models (RCMs). One of the most striking results is a robust increase in monsoon precipitation by the end of the 21st century but regional differences in strength. First the ability of RCMs to simulate the monsoon climate is analyzed. For this purpose all three RCMs are forced with ECMWF reanalysis data for the period 1989-2008 at a horizontal resolution of ~25 km. The results are compared against independent observations. In order to simulate future climate the models are driven by lateral boundary conditions from two global climate models (GCMs: ECHAM5-MPIOM and HadCM3) using the SRES A1B scenario, except for one RCM, which only used data from one GCM. The results are presented for the full transient simulation period 1970-2099 and also for several time slices. The analysis concentrates on precipitation and temperature over land. All models show a clear signal of gradually wide-spread warming throughout the 21st century. The ensemble-mean warming over India is 1.5°C at the end of 2050, whereas it is 3.9°C at the end of century with respect to 1970-1999. The pattern of projected precipitation changes shows considerable spatial variability, with an increase in precipitation over the peninsular of India and coastal areas and, either no change or decrease further inland. From the analysis of a larger ensemble of global climate models using the A1B scenario a wide spread warming (~3.2°C) and an overall increase (~8.5%) in mean monsoon precipitation by the end of the 21st century is very likely. The influence of the driving GCM on the projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Modelos Teóricos , Clima , Índia , Estações do Ano , Temperatura , Incerteza , Abastecimento de Água
7.
Nature ; 493(7434): 660-3, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364745

RESUMO

Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.


Assuntos
Ciclo do Carbono , Conservação dos Recursos Naturais , Solo/química , Árvores/metabolismo , Radioisótopos de Carbono/análise , Indonésia , Estações do Ano
8.
Sci Total Environ ; 468-469 Suppl: S4-17, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22633462

RESUMO

Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.


Assuntos
Mudança Climática , Clima , Modelos Teóricos , Recursos Hídricos/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Agricultura , Conservação dos Recursos Naturais , Meio Ambiente , Previsões , Índia , Estações do Ano , Temperatura
9.
Philos Trans R Soc Lond B Biol Sci ; 365(1554): 2973-89, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20713397

RESUMO

This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO(2) rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.


Assuntos
Agricultura/métodos , Mudança Climática , Desenvolvimento Vegetal , Agricultura/tendências , Modelos Teóricos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA