Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1218, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075234

RESUMO

The overuse of antibiotics in clinical and livestock settings is accelerating the selection of multidrug resistant bacterial pathogens. Antibiotic resistant bacteria result in increased mortality and financial strain on the health care and livestock industry. The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to have antimicrobial properties and kill antibiotic resistant bacteria. Harnessing the activity of compounds within these clays that harbor antibiotic properties offers new therapeutic opportunities for fighting the potentially devastating effects of the post antibiotic era. However, natural samples are highly heterogenous and exhibit variable antibacterial effectiveness, therefore synthesizing minerals of high purity with reproducible antibacterial activity is needed. Here we describe for the first time synthetic smectite clay minerals and Fe-sulfide microspheres that reproduce the geochemical antibacterial properties observed in natural occurring clays. We show that these mineral formulations are effective at killing the ESKAPE pathogens (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter sp., Pseudomonas aeruginosa and Enterobacter sp.) by maintaining Fe2+ solubility and reactive oxygen species (ROS) production while buffering solution pH, unlike the application of metals alone. Our results represent the first step in utilizing a geochemical process to treat antibiotic resistant topical or gastrointestinal infections in the age of antibiotic resistance.


Assuntos
Antibacterianos/síntese química , Silicatos/síntese química , Animais , Farmacorresistência Bacteriana , Camundongos , Testes de Sensibilidade Microbiana , Minerais , Células NIH 3T3
2.
J Environ Radioact ; 243: 106796, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933215

RESUMO

The chemical and isotopic compositions of fallout melt glasses from nuclear tests contain a range of information constraining the physical conditions within the fireball and the mechanisms of fallout formation but historic studies tended to exclude the behavior of stable major and trace elements. Here, we present a large study specifically focused on major and trace element relationships within a population of macroscale fallout samples from a single event. We interpret these data to better constrain how fallout melt glass formation in near surface environments is influenced by that environment and demonstrate how major and trace element abundances can provide useful insights into chemical processes within the fireball. Data confirm that the uranium in the fallout glass population derives from two isotopically distinct endmembers: isotopically enriched uranium (presumably from the weapon), and natural composition uranium that may be a combination of anthropogenic and environmental materials from within the blast zone. The similarity between major and trace element concentrations in fallout and corresponding local soils from the event site confirm the local soils as the most probable source of entrained material into the fireball and the source of carrier material into which the bomb vapor was incorporated. The lack of correlation between major and trace element abundances with size indicates that volatility driven processes, such as condensation from the fireball, do not control the composition of macroscale fallout melt glass. Although the fallout has major and trace element chemical characteristics broadly similar to those of the local, associated soils, some systematic differences are observed between the two populations. Fallout melt glass is depleted in volatile elements such as K, Na, Tl and Pb, consistent with heating to temperatures above ∼1000 °C for 3-10 s. This is supported by the results of laser heating experiments performed on rhyolitic soil at temperatures (1600-2200 °C) and timescales (1-120 s) that are broadly relevant to fallout formation conditions. Relative enrichments of metals such as Cu and Co do not correlate with the abundance of uranium, suggesting that fallout also records input of near field anthropogenic materials. Our observations suggest that major chemical features can be related to processing in the fireball and used to inform the thermal-chemical evolution of the system. Ultimately, these data are consistent with a fallout formation mechanism that involves rapid melting of surface materials to form carrier material melts with minor incorporation of bomb vapor and a degree of volumetric volatile loss due to heating.


Assuntos
Monitoramento de Radiação , Oligoelementos , Urânio , Monitoramento Ambiental , Solo , Oligoelementos/análise , Urânio/análise
3.
Rapid Commun Mass Spectrom ; 34(7): e8627, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31658503

RESUMO

RATIONALE: The microanalytical community has an outstanding need for platinum group element (PGE) reference materials, particularly for trace element analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). National Institute of Standards and Technology (NIST) glasses contain Rh, Pd, and Pt, but lack Ru, Os, and Ir. Synthesis of silicate PGE standards has proven difficult due the tendency of PGEs to form metallic nuggets. METHODS: Additive manufacturing methods were used to produce PGE standards with a silica matrix. Monodispersed submicron PGE-doped Stöber particles were used as feedstock materials for electrophoretic deposition (EPD). Two-cm-sized samples produced by EPD were subsequently densified by thermal processing. The homogeneity of PGEs was tested using LA-ICPMS and concentrations were measured by laser ablation and solution ICPMS. RESULTS: The PGE concentrations ranged from 0.5 to 3 µg/g. The inhomogeneity was at the 3% RSD level for Ru, Rh, Ir, and Os throughout and 5% for Pt and Pd in the interior of the samples. Based on LA-ICPMS analyses, the interiors of the two samples have near identical concentrations in PGEs. CONCLUSIONS: The samples fabricated in this study represent the most complete and homogeneous PGE standards produced with a silicate matrix. The ability to produce multiple samples with the same composition provides opportunities for validating methods, monitoring long-term reproducibility, and facilitating interlaboratory comparisons.

4.
Anal Chem ; 91(18): 11643-11652, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418542

RESUMO

An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in "age dating capabilities" for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.

5.
Science ; 342(6162): 1069-73, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24200813

RESUMO

The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.


Assuntos
Acidentes , Ar , Explosões , Meteoroides , Federação Russa
6.
Anal Chem ; 85(23): 11258-64, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24144186

RESUMO

Evidence of (176)Hf excess in select meteorites older than 4556Ma was suggested to be caused by excitation of long-lived natural radionuclide (176)Lu to its short-lived isomer (176m)Lu, due to an irradiation event during accretion in the early solar system. A result of this process would be a deficit in (176)Lu in irradiated samples by between 1‰ and 7‰. Previous measurements of the Lu isotope ratio in rock samples have not been of sufficient precision to resolve such a phenomenon. We present a new analytical technique designed to measure the (176)Lu/(175)Lu isotope ratio in rock samples to a precision of ~0.1‰ using a multicollector inductively coupled mass spectrometer (MC-ICPMS). To account for mass bias we normalized all unknowns to Ames Lu. To correct for any drift and instability associated with mass bias, all standards and samples are doped with W metal and normalized to the nominal W isotopic composition. Any instability in the mass bias is then corrected by characterizing the relationship between the fractionation factor of Lu and W, which is calculated at the start of every analytical session. After correction for isobaric interferences, in particular (176)Yb, we were able to measure (176)Lu/(175)Lu ratios in samples to a precision of ~0.1‰. However, these terrestrial standards were fractionated from Ames Lu by an average of 1.22 ± 0.09‰. This offset in (176)Lu/(175)Lu is probably caused by isotopic fractionation of Lu during industrial processing of the Ames Lu standard. To allow more straightforward data comparison we propose the use of NIST3130a as a bracketing standard in future studies. Relative to NIST3130a, the terrestrial standards have a final weighted mean δ(176)Lu value of 0.11 ± 0.09‰. All samples have uncertainties of better than 0.11‰; hence, our technique is fully capable of resolving any differences in δ(176)Lu of greater than 1‰.

7.
Science ; 338(6114): 1583-7, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23258889

RESUMO

Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA