Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zootaxa ; 4821(2): zootaxa.4821.2.10, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33056328

RESUMO

The Burmese Roofed Turtle (Batagur trivittata Duméril Bibron, 1835) is a large (straight-line carapace length [CL] to 620 mm; Platt et al., 2019), aquatic, herbivorous turtle endemic to the major river systems of Myanmar (Smith 1931; TTWG 2017). Although historically widespread and apparently abundant, long-term population declines resulted from chronic egg collecting, subsistence harvesting of adults, and loss of critical nesting habitat (Platt et al. 2017a). By the late 1990s B. trivittata was considered a candidate for Extinct status (Bhupathy et al. 2000) until a living specimen purchased in a Chinese wildlife market came into the possession of an American turtle collector in the early 2000s (Platt et al. 2005; W.P. McCord, pers. comm.). Shortly thereafter, field surveys "rediscovered" two remnant populations in the Dokhtawady and upper Chindwin Rivers (Platt et al. 2005; Kuchling et al. 2006). Intense ex- and in-situ recovery efforts were launched shortly thereafter and continue today (Kuchling Tint Lwin 2004; Çilingir et al. 2017).


Assuntos
Tartarugas , Animais , Ecossistema , Humanos , Recém-Nascido , Rios
2.
Waste Manag ; 87: 173-182, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109516

RESUMO

Energy recovery from small and medium scale waste thermal treatment facilities in the municipalities of Japan is challenging, owing to low power generation efficiency and high economic demands. Gas Engine (GE) generation is considered an efficient resource utilization method in these facilities. In this study, new and consistent feedstock, Refuse Paper and Plastic Fuel (RPF), and wood pellets were tested in an air-blown Fluidized Bed Gasifier (FBG) for syngas utilization in a GE. With temperatures ranging from 700 to 940 °C and varying Equivalence Ratios (ER) of 0.3-0.5, some of the most important product gas characteristics were analyzed, including the Lower Heating Value (LHV) and tar concentration levels. Gas composition results revealed that the concentration tendencies varied for the product gases CO, H2, and hydrocarbons, depending on the feedstock type, whereas the same tendencies were observed for CH4 and tar concentrations. Through the ER range, the LHV of product gas for RPF and wood pellets was 3.4-5.9 MJ/Nm3. Tar concentrations decreased to 2.5-14.0 g/Nm3-dry as the ER was raised. The optimal ER for LHV performance in GE generation was approximately 0.4 for RPF and wood pellets, and remaining tar concentrations were about 5.0 g/Nm3-dry at the gasifier exit.


Assuntos
Plásticos , Madeira , Biomassa , Gases , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA