Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224956

RESUMO

Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates and rhizosphere metabolites, physiological stress indicators, and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon, and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, and Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, and ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits, and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.


Assuntos
Bactérias , Triticum , Bactérias/genética , Triticum/microbiologia , Rizosfera , Retroalimentação , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Fertilização , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA