Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072924

RESUMO

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Assuntos
Alcaloides , Epichloe , Lolium , Endófitos/metabolismo , Lolium/genética , Epichloe/genética , Epichloe/metabolismo , Simbiose , Poaceae/metabolismo , Alcaloides/metabolismo , Lipídeos
2.
PLoS One ; 17(10): e0275503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227922

RESUMO

Under favourable conditions, perennial ryegrass (Lolium perenne) engineered to accumulated high lipid (HL) carbon sink in their leaves was previously shown to also enhance photosynthesis and growth. The greater aboveground biomass was found to be diminished in a dense canopy compared to spaced pots. Besides, the underlying genetic regulatory network linking between leaf lipid sinks and these physiological changes remains unknown. In this study, we demonstrated that the growth advantage was not displayed in HL Lolium grown in spaced pots under low lights. Under standard lights, analysis of differentiating transcripts in HL Lolium reveals that the plants had elevated transcripts involved in lipid metabolism, light capturing, photosynthesis, and sugar signalling while reduced expression of genes participating in sugar biosynthesis and transportation. The plants also had altered several transcripts involved in mitochondrial oxidative respiration and redox potential. Many of the above upregulated or downregulated transcript levels were found to be complemented by growing the plants under low light. Overall, this study emphasizes the importance of carbon and energy homeostatic regulatory mechanisms to overall productivity of the HL Lolium through photosynthesis, most of which are significantly impacted by low irradiances.


Assuntos
Lolium , Carbono/metabolismo , Redes Reguladoras de Genes , Lipídeos , Lolium/metabolismo , Plantas/metabolismo , Açúcares
3.
Front Plant Sci ; 13: 951389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186081

RESUMO

The highly variable cytoplasmic N-terminus of the plant diacylglycerol acyltransferase 1 (DGAT1) has been shown to have roles in oligomerization as well as allostery; however, the biological significance of the variation within this region is not understood. Comparing the coding sequences over the variable N-termini revealed the Poaceae DGAT1s contain relatively high GC compositional gradients as well as numerous direct and inverted repeats in this region. Using a variety of reciprocal chimeric DGAT1s from angiosperms we show that related N-termini had similar effects (positive or negative) on the accumulation of the recombinant protein in Saccharomyces cerevisiae. When expressed in Camelina sativa seeds the recombinant proteins of specific chimeras elevated total lipid content of the seeds as well as increased seed size. In addition, we combine N- and C-terminal as well as internal tags with high pH membrane reformation, protease protection and differential permeabilization. This led us to conclude the C-terminus is in the ER lumen; this contradicts earlier reports of the cytoplasmic location of plant DGAT1 C-termini.

4.
PLoS One ; 17(2): e0263928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148336

RESUMO

Transcriptional regulator PEAPOD (PPD) and its binding partners comprise a complex that is conserved throughout many core eudicot plants with regard to protein domain sequence and the function of controlling organ size and shape. Orthologues of PPD also exist in the basal angiosperm Amborella trichopoda, various gymnosperm species, the lycophyte Selaginella moellendorffii and several monocot genera, although until now it was not known if these are functional sequences. Here we report constitutive expression of orthologues from species representing diverse taxa of plant phylogeny in the Arabidopsis Δppd mutant. PPD orthologues from S. moellendorffii, gymnosperm Picea abies, A. trichopoda, monocot Musa acuminata, and dicot Trifolium repens were able to complement the mutant and return it to the wild-type phenotype, demonstrating the conserved functionality of PPD throughout vascular plants. In addition, analysis of bryophyte genomes revealed potential PPD orthologues in model liverwort and moss species, suggesting a more primitive lineage for this conserved regulator. The Poaceae (grasses) lack the genes for the PPD module and the reason for loss of the complex from this economically significant family is unclear, given that grasses were the last of the flowering plants to evolve. Bioinformatic analyses identified putative PPD orthologues in close relatives of the Poaceae, indicating that the explanation for absence of PPD in the grasses may be more complex than previously considered. Understanding the mechanisms which led to loss of PPD from the grasses will provide insight into evolution of the Poaceae.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Selaginellaceae/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Evolução Molecular , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Tamanho do Órgão , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
5.
Front Plant Sci ; 12: 641822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897730

RESUMO

Diacylglycerol acyl-transferase (DGAT) and cysteine oleosin (CO) expression confers a novel carbon sink (of encapsulated lipid droplets) in leaves of Lolium perenne and has been shown to increase photosynthesis and biomass. However, the physiological mechanism by which DGAT + CO increases photosynthesis remains unresolved. To evaluate the relationship between sink strength and photosynthesis, we examined fatty acids (FA), water-soluble carbohydrates (WSC), gas exchange parameters and leaf nitrogen for multiple DGAT + CO lines varying in transgene accumulation. To identify the physiological traits which deliver increased photosynthesis, we assessed two important determinants of photosynthetic efficiency, CO2 conductance from atmosphere to chloroplast, and nitrogen partitioning between different photosynthetic and non-photosynthetic pools. We found that DGAT + CO accumulation increased FA at the expense of WSC in leaves of L. perenne and for those lines with a significant reduction in WSC, we also observed an increase in photosynthesis and photosynthetic nitrogen use efficiency. DGAT + CO L. perenne displayed no change in rubisco content or Vcmax but did exhibit a significant increase in specific leaf area (SLA), stomatal and mesophyll conductance, and leaf nitrogen allocated to photosynthetic electron transport. Collectively, we showed that increased carbon demand via DGAT+CO lipid sink accumulation can induce leaf-level changes in L. perenne which deliver increased rates of photosynthesis and growth. Carbon sinks engineered within photosynthetic cells provide a promising new strategy for increasing photosynthesis and crop productivity.

6.
J Exp Bot ; 71(7): 2351-2361, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31679036

RESUMO

By modifying two genes involved in lipid biosynthesis and storage [cysteine oleosin (cys-OLE)/diacylglycerol O-acyltransferase (DGAT)], the accumulation of stable lipid droplets in perennial ryegrass (Lolium perenne) leaves was achieved. Growth, biomass allocation, leaf structure, gas exchange parameters, fatty acids, and water-soluble carbohydrates were quantified for a high-expressing cys-OLE/DGAT ryegrass transformant (HL) and a wild-type (WT) control grown under controlled conditions with 1-10 mM nitrogen (N) supply at ambient and elevated atmospheric CO2. A dramatic shift in leaf carbon (C) storage occurred in HL leaves, away from readily mobilizable carbohydrates and towards stable lipid droplets. HL exhibited an increased growth rate, mainly in non-photosynthetic organs, leading to a decreased leaf mass fraction. HL leaves, however, displayed an increased specific leaf area and photosynthetic rate per unit leaf area, delivering greater overall C capture and leaf growth at high N supply. HL also exhibited a greater photosynthesis response to elevated atmospheric CO2. We speculate that by behaving as uniquely stable microsinks for C, cys-OLE-encapsulated lipid droplets can reduce feedback inhibition of photosynthesis and drive greater C capture. Manipulation of many genes and gene combinations has been used to increase non-seed lipid content. However, the cys-OLE/DGAT technology remains the only reported case that increases plant biomass. We contrast cys-OLE/DGAT with other lipid accumulation strategies and discuss the implications of introducing lipid sinks into non-seed organs for plant energy homeostasis and growth.


Assuntos
Carbono , Lolium , Dióxido de Carbono , Lipídeos , Nitrogênio , Fotossíntese , Folhas de Planta
7.
Plant Physiol ; 162(2): 626-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616604

RESUMO

Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Folhas de Planta/metabolismo , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biomassa , Dióxido de Carbono/metabolismo , Cisteína/química , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Lipídeos/análise , Dados de Sequência Molecular , Folhas de Planta/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Serina Proteases/metabolismo
8.
J Biotechnol ; 161(4): 407-13, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22922012

RESUMO

A variety of single-chain variable fragments (scFv) that had been previously developed to the surface epitopes of infective Trichostrongylus colubriformis L3 pathogenic gut nematodes of sheep were fused to a trimeric version of polyoleosin (three head-to-tail repeats of oleosin) and expressed in planta under the control of an Arabidopsis oleosin promoter. The fusion products were found to accumulate in oil bodies (OBs) at the range of 0.25-0.9% of the total seed protein which is comparable with the main 18 kDa isoform of Arabidopsis seed oleosin. Immunofluorescence microscopy and immuno-binding were used to demonstrate that it is possible to both purify the recombinant protein via enrichment for OBs as well as use the OBs emulsion to deliver functional recombinant scFv. This work presents a novel fusion strategy platform to boost the productivity and simplify the delivery of recombinant single chain antibodies and other like proteins.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Proteínas de Arabidopsis/imunologia , Arabidopsis/genética , Sementes/genética , Anticorpos de Cadeia Única/imunologia , Trichostrongylus/imunologia , Animais , Antígenos de Helmintos/imunologia , Imunoglobulina A/imunologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/imunologia
9.
Plant Biotechnol J ; 8(8): 912-27, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20444209

RESUMO

We have successfully created polyoleosins by joining multiple oleosin units in tandem head-to-tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies-containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.


Assuntos
Corpos de Inclusão/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Sesamum/genética , Sesamum/metabolismo
10.
Biotechnol Appl Biochem ; 53(Pt 2): 111-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18844608

RESUMO

We have compared the accumulation of recombinant variable heavy-chain portions [VHH (variable heavy-chain antibody from camelids)] of camelid antibodies in a variety of subcellular compartments produced in planta. The VHH coding sequences were optimized for expression in thale cress (Arabidopsis thaliana) and placed individually or as fused tandem heterodimers in synthetic plant-organelle-targeting cassettes designed to target the protein to either the cytoplasm, ER (endoplasmic reticulum), protein storage vacuole or chloroplast. Accumulation of individual VHHs was only detected in plants transformed with the ER-targeting cassette, whereas accumulation of the tandem VHHs was detected for all cassettes and was the highest with the ER cassette [0.1-0.7% (w/w) of total soluble proteins]. The ability of the plant-produced tandem VHH to reduce TNFalpha (tumour necrosis factor alpha) cytotoxicity was found to be comparable with previously characterized recombinant VHHs. In vitro antigen binding and functional stability in rumen fluid were determined on both prokaryotically expressed and plant-expressed tandem VHHs. The plant-produced VHH did not appear to be any more stable in rumen fluid than other soluble plant proteins; however, it was able to bind equally well to the antigen in the presence or absence of rumen fluid.


Assuntos
Anticorpos/genética , Anticorpos/imunologia , Arabidopsis/genética , Líquidos Corporais/metabolismo , Camelídeos Americanos/imunologia , Proteínas Recombinantes de Fusão/genética , Rúmen/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/química , Arabidopsis/citologia , Arabidopsis/metabolismo , Sequência de Bases , Camelídeos Americanos/genética , Expressão Gênica , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Dados de Sequência Molecular , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Fator de Necrose Tumoral alfa/imunologia
11.
Funct Plant Biol ; 32(4): 345-355, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689136

RESUMO

The autonomous floral promotion pathway plays a key role in regulating the flowering time of the model dicot Arabidopsis thaliana (L.) Heynh. To investigate whether this pathway is present in monocots, two autonomous pathway components, FCA and FY, were isolated from rice (Oryza sativa L.) and ryegrass (Lolium perenne L.). The predicted FCA proteins (OsFCA and LpFCA) are highly conserved over the RNA-binding and WW protein interaction domains, and the FY proteins (OsFY and LpFY) possess highly conserved WD repeats but a less well conserved C-terminal region containing Pro-Pro-Leu-Pro (PPLP) motifs. In Arabidopsis, FCA limits its own production by promoting the polyadenylation of FCA pre-mRNA within intron 3 to form a truncated transcript called FCA-ß. The identification of FCA-ß transcripts in rice and ryegrass indicates that equivalent mechanisms occur in monocots. FCA's autoregulation and flowering time functions require FCA to interact with the 3' end-processing factor, FY. The FCA WW domain from Arabidopsis, which is thought to recognise PPLP motifs, interacted with ryegrass FY protein in GST-pulldown assays. Together these results suggest that the FCA and FY genes in monocots have similar functions to the dicot flowering-time genes. The cloning of these genes may provide targets for manipulating the flowering time of monocot species.

12.
Funct Plant Biol ; 31(1): 63-72, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32688881

RESUMO

In asparagus (Asparagus officinalis L.), increased levels of asparagine (Asn) and Asn synthetase (AS) transcript are detected during foliar senescence and in harvested spears, possibly triggered by signals from a reduced supply of carbohydrate. To identify cis-elements mediating this regulation, the asparagus AS gene promoter was isolated and analysed by DNA sequencing, followed by expression of AS::GUS (ß-glucuronidase) reporter-gene constructs in transgenic tissue, and electrophoretic mobility shift assays (EMSA). The 1958-base pair (bp) region of the AS promoter upstream of the translation initiation ATG (-1958 bp region) was sufficient to confer sucrose (Suc)-regulated expression on the GUS reporter gene in asparagus callus and protoplasts, which were transformed by particle bombardment and electroporation, respectively. Removal of Suc from callus or protoplast media resulted in the induction of GUS activity. Deletion analysis of this 1958-bp fragment identified elements in the -640 to -266bp region as important for both high GUS levels and mediating the Suc response. This was supported by EMSA results, which showed the formation of three nuclear protein-DNA complexes with the -558 to -284 bp fragment of the promoter. A 20-bp oligonucleotide, designed to match the sequence from -423 to -404 bp, was able to out-compete formation of one of these protein-DNA complexes, suggesting a specific interaction with this sequence. This region of the promoter, overlapping with the 20-bp oligonucleotide sequence, contains a 10-bp stretch identical to a sequence previously shown to mediate low Suc induction of an Oryza sativa (rice) α-amylase gene, and may thus represent a conserved Suc-responsive element.

13.
Funct Plant Biol ; 31(6): 573-582, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688929

RESUMO

The Asparagus officinalis L. asparagine (Asn) synthetase (AS) promoter was analysed for elements responding to carbohydrate and senescence signals. Transgenic Arabidopsis thaliana L. plants containing deletion constructs of the -1958 bp AS promoter linked to the ß-glucuronidase (GUS) reporter gene (AS::GUS) were analysed by measuring GUS specific activity. Inclusion of sucrose (Suc), glucose (Glc) or fructose (Fru) in plant media repressed levels of GUS activity in -1958AS::GUS plants, regardless of the light environment, with increases in GUS found 1 d after incubation on Suc-lacking media. Hexokinase is likely to be involved in the signal pathway, as Suc, Glc, Fru, 2-deoxy-d-glucose and mannose were more effective repressors than 3-O-methylglucose, and the hexokinase inhibitor mannoheptulose reduced repression. Plants containing AS::GUS constructs with deletions that reduced the promoter to less than -405 bp did not show low sugar induction. AS::GUS activity was significantly higher in excised leaves induced to senesce by dark storage for 24 h, compared to fresh leaves, for lines containing at least -640 bp of the AS promoter but not those with -523 bp or smaller promoter fragments. Fusion of the -640 to -523 bp region to a -381AS::GUS construct generated a promoter that retained senescence induction but lacked low sugar induction. Alignment of this region to the 33-bp senescence-related sequence of the Arabidopsis and Brassica napus L. SAG12 promoters identified the sequence TTGCACG as being conserved in all the promoters, and which may be an important senescence-responsive element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA