Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766140

RESUMO

Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage1-3. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days4,5, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.

2.
Science ; 378(6615): 68-78, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201590

RESUMO

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 8 , Glioma , Isocitrato Desidrogenase , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 8/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
3.
Nature ; 599(7886): 684-691, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789882

RESUMO

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.


Assuntos
Encéfalo/citologia , Células/classificação , Montagem e Desmontagem da Cromatina , Cromatina/química , Cromatina/genética , Genes , Conformação Molecular , Animais , Sítios de Ligação , Células/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Família Multigênica/genética , Neurônios/classificação , Neurônios/metabolismo , Desnaturação de Ácido Nucleico , Fatores de Transcrição/metabolismo
4.
Front Mol Neurosci ; 11: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541020

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.

5.
Front Mol Neurosci ; 10: 415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311808

RESUMO

Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A) or mutation of residue Val18 (V18M) enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID), co-immunoprecipitation and in situ proximity-ligation assay (PLA), we identified the heat shock proteins (HSPs) HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES) or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT) compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER)- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms for the functional regulation of wild-type and CMS-related mutant ChAT by pro-stabilizing HSPs and the pro-degradative co-chaperone p97/VCP that may have broader implications for ChAT function during cellular stress and disease.

6.
Sci Rep ; 6: 23914, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052102

RESUMO

The M-transcript of human choline acetyltransferase (ChAT) produces an 82-kDa protein (82-kDa ChAT) that concentrates in nuclei of cholinergic neurons. We assessed the effects of acute exposure to oligomeric amyloid-ß1-42 (Aß1-42) on 82-kDa ChAT disposition in SH-SY5Y neural cells, finding that acute exposure to Aß1-42 results in increased association of 82-kDa ChAT with chromatin and formation of 82-kDa ChAT aggregates in nuclei. When measured by chromatin immunoprecipitation with next-generation sequencing (ChIP-seq), we identified that Aß1-42-exposure increases 82-kDa ChAT association with gene promoters and introns. The Aß1-42-induced 82-kDa ChAT aggregates co-localize with special AT-rich binding protein 1 (SATB1), which anchors DNA to scaffolding/matrix attachment regions (S/MARs). SATB1 had a similar genomic association as 82-kDa ChAT, with both proteins associating with synapse and cell stress genes. After Aß1-42 -exposure, both SATB1 and 82-kDa ChAT are enriched at the same S/MAR on the APP gene, with 82-kDa ChAT expression attenuating an increase in an isoform-specific APP mRNA transcript. Finally, 82-kDa ChAT and SATB1 have patterned genomic association at regions enriched with S/MAR binding motifs. These results demonstrate that 82-kDa ChAT and SATB1 play critical roles in the response of neural cells to acute Aß-exposure.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Colina O-Acetiltransferase/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Regiões de Interação com a Matriz/efeitos dos fármacos , Neurônios/citologia , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/efeitos dos fármacos , Peso Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
7.
Neurobiol Dis ; 69: 32-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844149

RESUMO

Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to ß-amyloid peptides (Aß), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aß production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aß1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aß1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aß production. This decreased formation of Aß could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to increased levels of Aß. Decreasing levels of 82-kDa ChAT due to increasing age or neurodegeneration could alter the balance towards increasing Aß production, with this potentiating the decline in function of cholinergic neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Neurônios Colinérgicos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Camundongos Transgênicos , Análise em Microsséries , Presenilina-1/genética , Presenilina-1/metabolismo , Regiões Promotoras Genéticas
8.
J Neurochem ; 128(5): 725-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24127780

RESUMO

The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-ß-cyclodextrin (MßC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MßC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MßC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Biotinilação , Linhagem Celular , Centrifugação com Gradiente de Concentração , Colesterol Oxidase/metabolismo , Colina/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Interpretação Estatística de Dados , Feminino , Filipina/metabolismo , Gangliosídeo G(M1)/metabolismo , Hemicolínio 3/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Ratos , Sinaptossomos/metabolismo , beta-Ciclodextrinas/metabolismo
9.
BMC Pharmacol Toxicol ; 13: 11, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23079001

RESUMO

BACKGROUND: Cocaine exposure has been reported to alter central µ-opioid receptor (MOR) expression in vivo. The present study employed an in vitro cellular model to explore possible mechanisms that may be involved in this action of cocaine. METHODS: To assess the effects of cocaine on MOR levels, two treatment regimens were tested in PC12 cells: single continuous or multiple intermittent. MOR protein levels were assessed by western blot analysis and quantitative PCR was used to determine relative MOR mRNA expression levels. To evaluate the role of nitric oxide (NO) and histone acetylation in cocaine-induced MOR expression, cells were pre-treated with the NO synthase inhibitor Nω-nitro-L-arginine methylester (L-NAME) or the non-selective histone acetyltransferase inhibitor curcumin. RESULTS: Both cocaine treatment regimens significantly increased MOR protein levels and protein stability, but only multiple intermittent treatments increased MOR mRNA levels as well as c-fos mRNA levels and activator protein 1 binding activity. Both regimens increased NO production, and pre-treatment with L-NAME prevented cocaine-induced increases in MOR protein and mRNA levels. Single and multiple cocaine treatment regimens inhibited histone deacetylase activity, and pre-treatment with curcumin prevented cocaine-induced up-regulation of MOR protein expression. CONCLUSIONS: In the PC12 cell model, both NO and histone deacetylase activity regulate cocaine-induced MOR expression at both the transcriptional and post-transcriptional levels. Based on these novel findings, it is hypothesized that epigenetic mechanisms are implicated in cocaine's action on MOR expression in neurons.


Assuntos
Cocaína/administração & dosagem , Histona Desacetilases/metabolismo , Óxido Nítrico/metabolismo , Receptores Opioides mu/metabolismo , Animais , Cicloeximida/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Histona Desacetilases/genética , Células PC12 , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA