Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573316

RESUMO

Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.


Assuntos
Actomiosina , Fator A de Crescimento do Endotélio Vascular , Animais , Citoesqueleto de Actina , Ouriços-do-Mar , Equinodermos , Eucariotos
2.
Dalton Trans ; 53(2): 493-511, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38087991

RESUMO

The paper introduces Chemdex, a freely accessible web-based database of over 70 000 compounds characterised by crystallography from across the periodic table. Its software calculates for an atom of interest within each compound classifications including valence number, oxidation number, coordination number, electron number, several covalent bond classifications, and the attached atom set. Users may explore distributions of these classifications by percentages and heat map displays for individual elements or sets of elements, or in several cases for one classification plotted against a second. These properties often display clear periodicity. Based upon distributions across the periodic table of valence numbers, electron numbers, coordination numbers, and attached atom data suggestions are made regarding the placement of hydrogen in the periodic table, membership of group 3 in the periodic table, locations of the early actinoids in the periodic table, and assignments of certain elements as metalloids.

3.
Transfusion ; 63(4): 690-695, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752042

RESUMO

BACKGROUND: A large, worldwide outbreak of mpox (formerly referred to as monkeypox) involving mainly men who have sex with men commenced in May 2022. We evaluated the frequency of positivity for the causative agent, monkeypox virus (MPXV), in blood donations collected in August 2022, during the outbreak period in Southern England. METHODS/MATERIALS: The sensitivity and specificity of an MPXV-specific PCR and a generic non-variola orthopoxvirus (NVO) PCR were evaluated using samples from mpox cases and synthetic DNA standards. Residual minipools from nucleic acid testing were obtained from 10,896 blood donors in Southern England, with 21% from London. RESULTS: MPXV and NVO PCRs were both capable of detection of single copies of target sequence with calculated limits of detection (LOD)90 s of 2.3 and 2.1 DNA copies and analytical sample sensitivities of 46 and 42 MPXV DNA copies/ml, respectively. 454 minipools produced from 10,896 unique donors were assayed for MPXV DNA by both methods. No positive minipools were detected by either PCR. CONCLUSIONS: Although blood donors are unrepresentative of the UK population in terms of MPXV infection risk, the uniformly negative MPXV DNA testing results provide reassurance that MPXV viraemia and potential transmission risk were rare or absent in donors during the outbreak period. Minipools from blood donors allow rapid implementation of large-scale population-based screening for emerging pathogens and represent an important resource for pandemic preparedness.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Feminino , Monkeypox virus/genética , Mpox/epidemiologia , Mpox/diagnóstico , Doação de Sangue , Homossexualidade Masculina , Surtos de Doenças
4.
Front Bioinform ; 2: 740078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304277

RESUMO

We describe a new open-source program called LEVERSC to address the challenges of visualizing the multi-channel 3-D images prevalent in biological microscopy. LEVERSC uses a custom WebGL hardware-accelerated raycasting engine unique in its combination of rendering quality and performance, particularly for multi-channel data. Key features include platform independence, quantitative visualization through interactive voxel localization, and reproducible dynamic visualization via the scripting interface. LEVERSC is fully scriptable and interactive, and works with MATLAB, Python and Java/ImageJ.

5.
Case Rep Cardiol ; 2022: 3679968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677700

RESUMO

The candlenut tree is a tropical plant that has a vast number of uses which include fertilizer, dye, ink for tattooing, and fuel. The inner seed of the nut is the most utilized portion of the plant and is often sold as a food additive, natural laxative, or a weight loss supplement. Unfortunately, the seed itself is very toxic when consumed whole and in its raw state. Typical symptoms of toxicity include abdominal pain, vomiting, and diarrhea. Rarely, it can cause cardiac dysrhythmias, most commonly bradycardia and atrioventricular heart block. We present a case of a young adult female with no significant past medical history who developed typical symptoms of toxicity, as well as atrioventricular heart block following ingestion of a candlenut. Most documented cases describe complete resolution of gastrointestinal and cardiac symptoms about one week following ingestion; however, treatment while inpatient can consist of inotropes or vasopressor support, intravenous fluid hydration, electrolyte replacement, and antiemetics. Although the mechanism of action remains unclear, this report provides physicians with an understanding of the risks of ingestion and the knowledge of typical management of the toxic effects of the candlenut.

6.
J Struct Biol ; 213(4): 107797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530133

RESUMO

Biomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering. Sea urchin larval skeletogenesis offers an excellent platform for functional analyses of both the molecular control system and mineral uptake and deposition. Here we describe the current understanding of the genetic, molecular and cellular processes that underlie sea urchin larval skeletogenesis. We portray the regulatory genes that define the specification of the skeletogenic cells and drive the various morphogenetic processes that occur in the skeletogenic lineage, including: epithelial to mesenchymal transition, cell migration, spicule cavity formation and mineral deposition into the spicule cavity. We describe recent characterizations of the size, motion and mineral concentration of the calcium-bearing vesicles in the skeletogenic cells. We review the distinct specification states within the skeletogenic lineage that drive localized skeletal growth at the tips of the spicules. Finally, we discuss the surprising similarity between the regulatory network and cellular processes that drive sea urchin skeletogenesis and those that control vertebrate vascularization. Overall, we illustrate the novel insights on the biological regulation and evolution of biomineralization, gained from studies of the sea urchin larval skeletogenesis.


Assuntos
Biomineralização/genética , Calcificação Fisiológica/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Ouriços-do-Mar/genética , Animais , Movimento Celular/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Transição Epitelial-Mesenquimal/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo
7.
Elife ; 102021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34431475

RESUMO

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.


Assuntos
Regulação da Expressão Gênica/fisiologia , Junções Intercelulares/fisiologia , Neutrófilos/fisiologia , Animais , Linhagem Celular , Proteínas de Fluorescência Verde , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura
8.
Dev Biol ; 473: 80-89, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577829

RESUMO

Organisms can uptake minerals, shape them in different forms and generate teeth, skeletons or shells that support and protect them. Mineral uptake, trafficking and nucleation are tightly regulated by the biomineralizing cells through networks of specialized proteins. Specifically, matrix metalloproteases (MMPs) digest various extracellular substrates and allow for mineralization in the vertebrates' teeth and bones, but little is known about their role in invertebrates' systems. The sea urchin embryo provides an excellent invertebrate model for genetic and molecular studies of biomineralization. MMP inhibition prevents the growth of the calcite spicules of the sea urchin larval skeleton, however, the molecular mechanisms and genes that underlie this response are not well understood. Here we study the spatial expression and regulation of two membrane type MMPs that were found to be occluded in the sea urchin spicules, Pl-MmpL7 and Pl-MmpL5, and investigate the function of Pl-MmpL7 in skeletogenesis. The inhibition of MMPs does not change the volume of the calcium vesicles in the skeletogenic cells. The expression of Pl-MmpL7 and Pl-MmpL5 is regulated by the Vascular Endothelial Growth Factor (VEGF) signaling, from the time of skeleton initiation and on. The expression of these genes is localized to the subsets of skeletogenic cells where active spicule growth occurs throughout skeletogenesis. Downregulation of Pl-MmpL7 expression delays the growth of the skeletal rods and in some cases, strongly perturbs skeletal shape. The localized expression of Pl-MmpL7 and Pl-MmpL5 to the active growth zone and the effect of Pl-MmpL7 perturbations on skeletal growth, suggest that these genes are essential for normal spicule elongation in the sea urchin embryo.


Assuntos
Metaloproteinases da Matriz/metabolismo , Ouriços-do-Mar/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Mesoderma/metabolismo , Ouriços-do-Mar/genética , Transdução de Sinais/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
PLoS Comput Biol ; 17(2): e1008780, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617532

RESUMO

Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn't affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.


Assuntos
Biomineralização , Cálcio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar/fisiologia , Actomiosina/química , Actomiosina/metabolismo , Animais , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Biologia do Desenvolvimento/métodos , Difusão , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Fluoresceínas/química , Cinética , Movimento (Física) , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Bioinformatics ; 35(24): 5393-5395, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31240306

RESUMO

SUMMARY: Light microscopes can now capture data in five dimensions at very high frame rates producing terabytes of data per experiment. Five-dimensional data has three spatial dimensions (x, y, z), multiple channels (λ) and time (t). Current tools are prohibitively time consuming and do not efficiently utilize available hardware. The hydra image processor (HIP) is a new library providing hardware-accelerated image processing accessible from interpreted languages including MATLAB and Python. HIP automatically distributes data/computation across system and video RAM allowing hardware-accelerated processing of arbitrarily large images. HIP also partitions compute tasks optimally across multiple GPUs. HIP includes a new kernel renormalization reducing boundary effects associated with widely used padding approaches. AVAILABILITY AND IMPLEMENTATION: HIP is free and open source software released under the BSD 3-Clause License. Source code and compiled binary files will be maintained on http://www.hydraimageprocessor.com. A comprehensive description of all MATLAB and Python interfaces and user documents are provided. HIP includes GPU-accelerated support for most common image processing operations in 2-D and 3-D and is easily extensible. HIP uses the NVIDIA CUDA interface to access the GPU. CUDA is well supported on Windows and Linux with macOS support in the future.


Assuntos
Algoritmos , Software , Computadores , Biblioteca Gênica
11.
IEEE Trans Med Imaging ; 38(4): 883-893, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30296216

RESUMO

One of the most important and error-prone tasks in biological image analysis is the segmentation of touching or overlapping cells. Particularly for optical microscopy, including transmitted light and confocal fluorescence microscopy, there is often no consistent discriminative information to separate cells that touch or overlap. It is desired to partition touching foreground pixels into cells using the binary threshold image information only, and optionally incorporating gradient information. The most common approaches for segmenting touching and overlapping cells in these scenarios are based on the watershed transform. We describe a new approach called pixel replication for the task of segmenting elliptical objects that touch or overlap. Pixel replication uses the image Euclidean distance transform in combination with Gaussian mixture models to better exploit practically effective optimization for delineating objects with elliptical decision boundaries. Pixel replication improves significantly on commonly used methods based on watershed transforms, or based on fitting Gaussian mixtures directly to the thresholded image data. Pixel replication works equivalently on both 2-D and 3-D image data, and naturally combines information from multi-channel images. The accuracy of the proposed technique is measured using both the segmentation accuracy on simulated ellipse data and the tracking accuracy on validated stem cell tracking results extracted from hundreds of live-cell microscopy image sequences. Pixel replication is shown to be significantly more accurate compared with other approaches. Variance relationships are derived, allowing a more practically effective Gaussian mixture model to extract cell boundaries for data generated from the threshold image using the uniform elliptical distribution and from the distance transform image using the triangular elliptical distribution.


Assuntos
Técnicas Citológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Células Cultivadas/citologia , Humanos , Modelos Biológicos , Distribuição Normal
12.
Phytopathology ; 108(1): 6-14, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28643580

RESUMO

Cyclophilins (EC 5.2.1.8) belong to a subgroup of proteins known as immunophilins, which also include FK506-binding proteins and parvulins. Members of the immunophilins have two main characteristic properties: (i) peptidyl-prolyl cis-trans isomerase activity and (ii) the ability to bind immunosuppressant molecules of fungal origin. Cyclophilins are some of the most conserved proteins present in eukaryotes and prokaryotes, and they have been implicated in diverse cellular processes and responses to multiple biotic and abiotic stresses. Cyclophilins have been exploited in humans and plants extensively, but they have only recently received attention in regard to phytopathogens. In Phellinus sulphurascens and species of the genus Leptosphaeria and Phytophthora, high expression of cyclophilins was found to be related to infection. Moreover, recent studies of cyclophilins in certain phytopathogens, such as Magnaporthe oryzae, Botrytis cinerea, Cryphonectria parasitica, and Puccinia triticina, demonstrated their roles as a pathogenicity factors. In addition to pathogenicity, cyclophilins have high affinity for the immunosuppressive drug cyclosporin A, which is a potent antifungal agent. Although cyclophilins are highly conserved in phytopathogens, because they have been less studied, their role remains largely unknown. In this review, we provide detailed information on the cyclophilins in several phytopathogens, including fungi and oomycetes, as well as their role in suppressing plant immunity.


Assuntos
Ciclofilinas/metabolismo , Fungos/patogenicidade , Imunofilinas/metabolismo , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Plantas/imunologia , Sequência de Aminoácidos , Ciclofilinas/genética , Interações Hospedeiro-Patógeno , Modelos Moleculares , Filogenia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Alinhamento de Sequência , Virulência
13.
Stem Cell Reports ; 9(6): 1931-1947, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29129683

RESUMO

Neural stem cell activity in the ventricular-subventricular zone (V-SVZ) decreases with aging, thought to occur by a unidirectional decline. However, by analyzing the V-SVZ transcriptome of male mice at 2, 6, 18, and 22 months, we found that most of the genes that change significantly over time show a reversal of trend, with a maximum or minimum expression at 18 months. In vivo, MASH1+ progenitor cells decreased in number and proliferation between 2 and 18 months but increased between 18 and 22 months. Time-lapse lineage analysis of 944 V-SVZ cells showed that age-related declines in neurogenesis were recapitulated in vitro in clones. However, activated type B/type C cell clones divide slower at 2 to 18 months, then unexpectedly faster at 22 months, with impaired transition to type A neuroblasts. Our findings indicate that aging of the V-SVZ involves significant non-monotonic changes that are programmed within progenitor cells and are observable independent of the aging niche.


Assuntos
Envelhecimento/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Transcriptoma/genética , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Envelhecimento/patologia , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Masculino , Camundongos , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/patologia
14.
Comput Vis ECCV ; 9913: 291-305, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27878138

RESUMO

Neural stem and progenitor cells (NPCs) generate processes that extend from the cell body in a dynamic manner. The NPC nucleus migrates along these processes with patterns believed to be tightly coupled to mechanisms of cell cycle regulation and cell fate determination. Here, we describe a new segmentation and tracking approach that allows NPC processes and nuclei to be reliably tracked across multiple rounds of cell division in phase-contrast microscopy images. Results are presented for mouse adult and embryonic NPCs from hundreds of clones, or lineage trees, containing tens of thousands of cells and millions of segmentations. New visualization approaches allow the NPC nuclear and process features to be effectively visualized for an entire clone. Significant differences in process and nuclear dynamics were found among type A and type C adult NPCs, and also between embryonic NPCs cultured from the anterior and posterior cerebral cortex.

15.
Bioinformatics ; 32(22): 3530-3531, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27423896

RESUMO

The analysis of time-lapse images showing cells dividing to produce clones of related cells is an important application in biological microscopy. Imaging at the temporal resolution required to establish accurate tracking for vertebrate stem or cancer cells often requires the use of transmitted light or phase-contrast microscopy. Processing these images requires automated segmentation, tracking and lineaging algorithms. There is also a need for any errors in the automated processing to be easily identified and quickly corrected. We have developed LEVER, an open source software tool that combines the automated image analysis for phase-contrast microscopy movies with an easy-to-use interface for validating the results and correcting any errors. AVAILABILITY AND IMPLEMENTATION: LEVER is available free and open source, licensed under the GNU GPLv3. Details on obtaining and using LEVER are available at http://n2t.net/ark:/87918/d9rp4t CONTACT: acohen@coe.drexel.edu.


Assuntos
Linhagem da Célula , Proliferação de Células , Software , Algoritmos , Animais , Humanos , Processamento de Imagem Assistida por Computador , Microscopia , Microscopia de Contraste de Fase
16.
J Ocul Pharmacol Ther ; 32(5): 331-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27191513

RESUMO

PURPOSE: Assessing the morphologic properties of cells in microscopy images is an important task to evaluate cell health, identity, and purity. Typically, subjective visual assessments are accomplished by an experienced researcher. This subjective human step makes transfer of the evaluation process from the laboratory to the cell manufacturing facility difficult and time consuming. METHODS: Automated image analysis can provide rapid, objective measurements of cultured cells, greatly aiding manufacturing, regulatory, and research goals. Automated algorithms for classifying images based on appearance characteristics typically either extract features from the image and use those features for classification or use the images directly as input to the classification algorithm. In this study we have developed both feature and nonfeature extraction methods for automatically measuring "cobblestone" structure in human retinal pigment epithelial (RPE) cell cultures. RESULTS: A new approach using image compression combined with a Kolmogorov complexity-based distance metric enables robust classification of microscopy images of RPE cell cultures. The automated measurements corroborate determinations made by experienced cell biologists. We have also developed an approach for using steerable wavelet filters for extracting features to characterize the individual cellular junctions. CONCLUSIONS: Two image analysis techniques enable robust and accurate characterization of the cobblestone morphology that is indicative of viable RPE cultures for therapeutic applications.


Assuntos
Técnicas de Cultura de Células , Forma Celular , Interpretação de Imagem Assistida por Computador/métodos , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia , Algoritmos , Automação , Células Cultivadas , Transição Epitelial-Mesenquimal , Humanos , Reconhecimento Automatizado de Padrão/métodos
17.
Stem Cell Reports ; 5(4): 609-20, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26344906

RESUMO

Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Neurais/citologia , Algoritmos , Animais , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Rastreamento de Células/métodos , Humanos , Camundongos , Microscopia/métodos
18.
BMC Bioinformatics ; 15: 328, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25281197

RESUMO

BACKGROUND: Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. RESULTS: We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. CONCLUSIONS: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.


Assuntos
Algoritmos , Linhagem da Célula , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Células-Tronco Neurais/citologia , Automação , Microscopia Confocal , Microscopia de Fluorescência , Software
19.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24441936

RESUMO

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Assuntos
Interpretação de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Interpretação de Imagem Assistida por Computador/normas , Microscopia de Fluorescência/normas
20.
Artigo em Inglês | MEDLINE | ID: mdl-25571242

RESUMO

Image sequences of live proliferating cells often contain visual ambiguities that are difficult even for human domain experts to resolve. Here we present a new approach to analyzing image sequences that capture the development of clones of hematopoietic stem cells (HSCs) from live cell time lapse microscopy. The HSCs cannot survive long term imaging unless they are cultured together with a secondary cell type, OP9 stromal cells. The HSCs frequently disappear under the OP9 cell layer, making segmentation difficult or impossible from a single image frame, even for a human domain expert. We have developed a new approach to the segmentation of HSCs that captures these occluded cells. Starting with an a priori segmentation that uses a Monte Carlo technique to estimate the number of cells in a clump of touching cells, we proceed to track and lineage the image data. Following user validation of the lineage information, an a posteriori resegmentation step utilizing tracking results delineates the HSCs occluded by the OP9 layer. Resegmentation has been applied to 3031 occluded segmentations from 77 tracks, correctly recovering over 84% of the occluded segmentations.


Assuntos
Rastreamento de Células/métodos , Células-Tronco Hematopoéticas/citologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Proliferação de Células , Humanos , Camundongos Endogâmicos C57BL , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA