Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Med Genet A ; 188(1): 292-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533271

RESUMO

Cohen-Gibson syndrome is a rare genetic disorder, characterized by fetal or early childhood overgrowth and mild to severe intellectual disability. It is caused by heterozygous aberrations in EED, which encodes an evolutionary conserved polycomb group (PcG) protein that forms the polycomb repressive complex-2 (PRC2) together with EZH2, SUZ12, and RBBP7/4. In total, 11 affected individuals with heterozygous pathogenic variants in EED were reported, so far. All variants affect a few key residues within the EED WD40 repeat domain. By trio exome sequencing, we identified the heterozygous missense variant c.581A > G, p.(Asn194Ser) in exon 6 of the EED-gene in an individual with moderate intellectual disability, overgrowth, and epilepsy. The same pathogenic variant was detected in 2 of the 11 previously reported cases. Epilepsy, however, was only diagnosed in one other individual with Cohen-Gibson syndrome before. Our findings further confirm that the WD40 repeat domain represents a mutational hotspot; they also expand the clinical spectrum of Cohen-Gibson syndrome and highlight the clinical variability even in individuals with the same pathogenic variant. Furthermore, they indicate a possible association between Cohen-Gibson syndrome and epilepsy.


Assuntos
Epilepsia , Deficiência Intelectual , Pré-Escolar , Epilepsia/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Sequenciamento do Exoma
3.
Clin Epigenetics ; 12(1): 1, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892361

RESUMO

BACKGROUND: Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract associated with abdominal pain and diarrhea. Pain caused by Crohn's disease likely involves neurogenic inflammation which seems to involve the ion channel transient receptor potential ankyrin 1 (TRPA1). Since the promoter methylation of TRPA1 was shown to influence pain sensitivity, we asked if the expression of TRPA1 is dysregulated in patients suffering from Crohn's disease. The methylation rates of CpG dinucleotides in the TRPA1 promoter region were determined from DNA derived from whole blood samples of Crohn patients and healthy participants. Quantitative sensory testing was used to examine pain sensitivities. RESULTS: Pressure pain thresholds were lower in Crohn patients as compared to healthy participants, and they were also lower in females than in males. They correlated inversely with the methylation rate at the CpG - 628 site of the TRPA1 promoter. This effect was more pronounced in female compared to male Crohn patients. Similar results were found for mechanical pain thresholds. Furthermore, age-dependent effects were detected. Whereas the CpG - 628 methylation rate declined with age in healthy participants, the methylation rate in Crohn patients increased. Pressure pain thresholds increased with age in both cohorts. CONCLUSIONS: The TRPA1 promoter methylation appears to be dysregulated in patients suffering from Crohn's disease, and this effect is most obvious when taking gender and age into account. As TRPA1 is regarded to be involved in pain caused by neurogenic inflammation, its aberrant expression may contribute to typical symptoms of Crohn's disease.


Assuntos
Doença de Crohn/genética , Metilação de DNA , Dor/genética , Canal de Cátion TRPA1/genética , Adulto , Estudos de Casos e Controles , Ilhas de CpG , Doença de Crohn/complicações , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Limiar da Dor , Regiões Promotoras Genéticas , Caracteres Sexuais
4.
EBioMedicine ; 39: 401-408, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30503201

RESUMO

BACKGROUND: Small fiber neuropathy (SFN) is a severe and disabling chronic pain syndrome with no causal and limited symptomatic treatment options. Mechanistically based individual treatment is not available. We report an in-vitro predicted individualized treatment success in one therapy-refractory Caucasian patient suffering from SFN for over ten years. METHODS: Intrinsic excitability of human induced pluripotent stem cell (iPSC) derived nociceptors from this patient and respective controls were recorded on multi-electrode (MEA) arrays, in the presence and absence of lacosamide. The patient's pain ratings were assessed by a visual analogue scale (10: worst pain, 0: no pain) and treatment effect was objectified by microneurography recordings of the patient's single nerve C-fibers. FINDINGS: We identified patient-specific changes in iPSC-derived nociceptor excitability in MEA recordings, which were reverted by the FDA-approved compound lacosamide in vitro. Using this drug for individualized treatment of this patient, the patient's pain ratings decreased from 7.5 to 1.5. Consistent with the pain relief reported by the patient, microneurography recordings of the patient's single nerve fibers mirrored a reduced spontaneous nociceptor (C-fiber) activity in the patient during lacosamide treatment. Microneurography recordings yielded an objective measurement of altered peripheral nociceptor activity following treatment. INTERPRETATION: Thus, we are here presenting one example of successful patient specific precision medicine using iPSC technology and individualized therapeutic treatment based on patient-derived sensory neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Lacosamida/administração & dosagem , Nociceptores/citologia , Neuropatia de Pequenas Fibras/tratamento farmacológico , Idoso , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lacosamida/farmacologia , Modelos Biológicos , Nociceptores/efeitos dos fármacos , Medição da Dor , Medicina de Precisão , Pesquisa Translacional Biomédica
5.
Sci Data ; 5: 180192, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204153

RESUMO

Spermatogenesis is an efficient and complex system of continuous cell differentiation. Previous studies investigating the transcriptomes of different cell populations in the testis relied either on sorting cells, cell depletion, or juvenile animals where not all stages of spermatogenesis have been completed. We present single-cell RNA sequencing (scRNA-Seq) data of 2,500 cells from the testes of two 8-week-old C57Bl/6J mice. Our dataset includes all spermatogenic stages from preleptotene to condensing spermatids as well as individual spermatogonia, Sertoli and Leydig cells. The data capture the full continuity of the meiotic and postmeiotic stages of spermatogenesis, and is thus ideally suited for marker discovery, network inference and similar analyses for which temporal ordering of differentiation processes can be exploited. Furthermore, it can serve as a reference for future studies involving single-cell RNA-Seq in mice where spermatogenesis is perturbed.


Assuntos
Células Intersticiais do Testículo , Análise de Sequência de RNA , Espermátides , Espermatogônias , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/biossíntese , Análise de Célula Única , Espermatogênese/genética , Testículo/citologia , Testículo/metabolismo
6.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743358

RESUMO

The cellular protein SPOC1 (survival time-associated PHD [plant homeodomain] finger protein in ovarian cancer 1) acts as a regulator of chromatin structure and the DNA damage response. It binds H3K4me2/3-containing chromatin and promotes DNA condensation by recruiting corepressors such as KAP-1 and H3K9 methyltransferases. Previous studies identified SPOC1 as a restriction factor against human adenovirus (HAdV) infection that is antagonized by E1B-55K/E4-orf6-dependent proteasomal degradation. Here, we demonstrate that, in contrast to HAdV-infected cells, SPOC1 is transiently upregulated during the early phase of human cytomegalovirus (HCMV) replication. We show that the expression of immediate early protein 1 (IE1) is sufficient and necessary to induce SPOC1. Additionally, we discovered that during later stages of infection, SPOC1 is downregulated in a glycogen synthase kinase 3ß (GSK-3ß)-dependent manner. We provide evidence that SPOC1 overexpression severely impairs HCMV replication by repressing the initiation of viral immediate early (IE) gene expression. Consistently, we observed that SPOC1-depleted primary human fibroblasts displayed an augmented initiation of viral IE gene expression. This occurs in a multiplicity of infection (MOI)-dependent manner, a defining hallmark of intrinsic immunity. Interestingly, repression requires the presence of high SPOC1 levels at the start of infection, while later upregulation had no negative impact, suggesting distinct temporal roles of SPOC1 during the HCMV replicative cycle. Mechanistically, we observed a highly specific association of SPOC1 with the major immediate early promoter (MIEP), strongly suggesting that SPOC1 inhibits HCMV replication by MIEP binding and the subsequent recruitment of heterochromatin-building factors. Thus, our data add SPOC1 as a novel factor to the endowment of a host cell to restrict cytomegalovirus infections.IMPORTANCE Accumulating evidence indicates that during millennia of coevolution, host cells have developed a sophisticated compilation of cellular factors to restrict cytomegalovirus infections. Defining this equipment is important to understand cellular barriers against viral infection and to develop strategies to utilize these factors for antiviral approaches. So far, constituents of PML nuclear bodies and interferon gamma-inducible protein 16 (IFI16) were known to mediate intrinsic immunity against HCMV. In this study, we identify the chromatin modulator SPOC1 as a novel restriction factor against HCMV. We show that preexisting high SPOC1 protein levels mediate a silencing of HCMV gene expression via a specific association with an important viral cis-regulatory element, the major immediate early promoter. Since SPOC1 expression varies between cell types, this factor may play an important role in tissue-specific defense against HCMV.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral , Cromatina/química , Cromatina/genética , Infecções por Citomegalovirus/metabolismo , Proteínas de Ligação a DNA/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
7.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27223324

RESUMO

PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Cromatografia em Gel , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Camundongos , Ligação Proteica
8.
J Pain Res ; 8: 829-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664154

RESUMO

The genetic control of pain has been repeatedly demonstrated in human association studies. In the present study, we assessed the relative contribution of 16 single nucleotide polymorphisms in pain-related genes, such as cathechol-O-methyl transferase gene (COMT), fatty acid amino hydrolase gene (FAAH), transient receptor potential cation channel, subfamily V, member 1 gene (TRPV1), and δ-opioid receptor gene (OPRD1), for postsurgical pain chronification. Ninety preoperatively pain-free male patients were assigned to good or poor outcome groups according to their intensity or disability score assessed at 1 week, 3 months, 6 months, and 1 year after funnel chest correction. The genetic effects were compared with those of two psychological predictors, the attentional bias toward positive words (dot-probe task) and the self-reported pain vigilance (Pain Vigilance and Awareness Questionnaire [PVAQ]), which were already shown to be the best predictors for pain intensity and disability at 6 months after surgery in the same sample, respectively. Cox regression analyses revealed no significant effects of any of the genetic predictors up to the end point of survival time at 1 year after surgery. Adding the genetics to the prediction by the attentional bias to positive words for pain intensity and the PVAQ for pain disability, again no significant additional explanation could be gained by the genetic predictors. In contrast, the preoperative PVAQ score was also, in the present enlarged sample, a meaningful predictor for lasting pain disability after surgery. Effect size measures suggested some genetic variables, for example, the polymorphism rs1800587G>A in the interleukin 1 alpha gene (IL1A) and the COMT haplotype rs4646312T>C/rs165722T>C/rs6269A>G/rs4633T>C/rs4818C>G/rs4680A>G, as possible relevant modulators of long-term postsurgical pain outcome. A comparison between pathophysiologically different predictor groups appears to be helpful in identifying clinically relevant predictors of chronic pain.

10.
J Biol Chem ; 289(4): 1971-80, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311784

RESUMO

Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.


Assuntos
Substituição de Aminoácidos , Eritromelalgia/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/metabolismo , Reto/anormalidades , Eritromelalgia/genética , Eritromelalgia/patologia , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HEK293 , Humanos , Transporte de Íons/genética , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Dor/patologia , Reto/metabolismo , Reto/patologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
11.
Matrix Biol ; 32(7-8): 387-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23665482

RESUMO

Spondyloepimetaphyseal dysplasia with joint laxity-leptodactylic type (SEMDJL2) is an autosomal dominant skeletal dysplasia which is characterized by midface hypoplasia, short stature, joint laxity with dislocations, genua valga, progressive scoliosis, and slender fingers. Recently, heterozygous missense mutations in KIF22, a gene which encodes a member of the kinesin-like protein family, have been identified in sporadic as well as familial cases of SEMDJL2. In the present study homozygosity mapping and whole-exome sequencing were combined to analyze a consanguineous family with a phenotype resembling SEMDJL2. We identified homozygous missense mutations in the two nearby genes NIN (Ninein) and POLE2 (DNA polymerase epsilon subunit B) which segregate with the disease in the family and were not present in 500 healthy control individuals and in the 1094 control individuals contained within the 1000-genomes database. We present several lines of evidence that mutant Ninein is most likely causative for the SEMDJL2-like phenotype. The centrosomal protein NIN shows a functional relationship with KIF22 and other proteins associated with chromosome congression/movement, centrosomal function, and ciliogenesis, which have been associated with skeletal dysplasias. Moreover, compound heterozygous missense mutations at more N-terminal positions of Ninein have very recently been identified in a family with microcephalic primordial dwarfism. Together with the present report this strongly supports a fundamental role of Ninein in skeletal development.


Assuntos
Proteínas do Citoesqueleto/genética , Instabilidade Articular/genética , Instabilidade Articular/patologia , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , DNA Polimerase II/genética , Componentes do Gene , Humanos , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Clin Cancer Res ; 19(12): 3201-11, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23630167

RESUMO

PURPOSE: Genome-wide DNA methylation analyses have identified hundreds of candidate DNA-hypermethylated genes in cancer. Comprehensive functional analyses provide an understanding of the biologic significance of this vast amount of DNA methylation data that may allow the determination of key epigenetic events associated with tumorigenesis. EXPERIMENTAL DESIGN: To study mechanisms of cysteine dioxygenase type 1 (CDO1) inactivation and its functional significance in breast cancer in a comprehensive manner, we screened for DNA methylation and gene mutations in primary breast cancers and analyzed growth, survival, and reactive oxygen species (ROS) production in breast cancer cells with restored CDO1 function in the context of anthracycline treatment. RESULTS: DNA methylation-associated silencing of CDO1 in breast cancer is frequent (60%), cancer specific, and correlates with disease progression and outcome. CDO1 function can alternatively be silenced by repressive chromatin, and we describe protein-damaging missense mutations in 7% of tumors without DNA methylation. Restoration of CDO1 function in breast cancer cells increases levels of ROS and leads to reduced viability and growth, as well as sensitization to anthracycline treatment. Priming with 5-azacytidine of breast cancer cells with epigenetically silenced CDO1 resulted in restored expression and increased sensitivity to anthracyclines. CONCLUSION: We report that silencing of CDO1 is a critical epigenetic event that contributes to the survival of oxidative-stressed breast cancer cells through increased detoxification of ROS and thus leads to the resistance to ROS-generating chemotherapeutics including anthracyclines. Our study shows the importance of CDO1 inactivation in breast cancer and its clinical potential as a biomarker and therapeutic target to overcome resistance to anthracyclines.


Assuntos
Antraciclinas/administração & dosagem , Neoplasias da Mama/genética , Cisteína Dioxigenase/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína Dioxigenase/antagonistas & inibidores , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Inativação Gênica , Humanos , Espécies Reativas de Oxigênio/metabolismo
13.
EXCLI J ; 12: 967-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27298612

RESUMO

25 selenoproteins that contain selenium, incorporated as selenocysteine (Sec), have been identified to date. Selenoprotein M (SELM) is one of seven endoplasmic reticulum (ER)-resident, Sec-containing proteins that may be involved in posttranslational processing of proteins and maintenance of ER function. Since SELM was overrepresented in a cartilage- and bone-specific expressed sequence tag (EST) library, we further investigated the expression pattern of Selm and its possible biological function in the skeleton. RNA in situ hybridization of Selm in chicken and mice of different developmental stages revealed prominent expression in bones, specifically in osteoblast, and in tendons. This result suggests that SELM functions during bone development, where it is possibly involved in the processing of secreted proteins.

14.
Epigenetics ; 7(7): 701-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22647880

RESUMO

Breast cancer (BC) is a disease with diverse tumor heterogeneity, which challenges conventional approaches to develop biomarkers for early detection and prognosis. To identify effective biomarkers, we performed a genome-wide screen for functional methylation changes in BC, i.e., genes silenced by promoter hypermethylation, using a functionally proven gene expression approach. A subset of candidate hypermethylated genes were validated in primary BCs and tested as markers for detection and prognosis prediction of BC. We identified 33 cancer specific methylated genes and, among these, two categories of genes: (1) highly frequent methylated genes that detect early stages of BC. Within that category, we have identified the combination of NDRG2 and HOXD1 as the most sensitive (94%) and specific (90%) gene combination for detection of BC; (2) genes that show stage dependent methylation frequency pattern, which are candidates to help delineate BC prognostic signatures. For this category, we found that methylation of CDO1, CKM, CRIP1, KL and TAC1 correlated with clinical prognostic variables and was a significant prognosticator for poor overall survival in BC patients. CKM [Hazard ratio (HR) = 2.68] and TAC1 (HR = 7.73) were the strongest single markers and the combination of both (TAC1 and CKM) was associated with poor overall survival independent of age and stage in our training (HR = 1.92) and validation cohort (HR = 2.87). Our study demonstrates an efficient method to utilize functional methylation changes in BC for the development of effective biomarkers for detection and prognosis prediction of BC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Neoplasias da Mama/mortalidade , Detecção Precoce de Câncer/métodos , Feminino , Inativação Gênica , Loci Gênicos , Proteínas de Homeodomínio/metabolismo , Humanos , Pessoa de Meia-Idade , Prognóstico , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/metabolismo
15.
Matrix Biol ; 30(7-8): 369-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21839171

RESUMO

UCMA (alternatively named GRP) is a novel member of the family of γ-carboxyglutamate (Gla) containing proteins that is mainly expressed in cartilage. We have used the zebrafish as a model organism to study UCMA function. Due to the whole genome duplication two Ucma genes are present in zebrafish, ucmaa and ucmab, located on chromosomes 25 and 4, respectively. UCMA gene structure, alternative splicing and protein sequence are highly conserved between mammals and zebrafish and Ucmaa and Ucmab are expressed in zebrafish skeletal tissues. Ucmaa is first detected in the notochord at 18 hpf and expression continues during notochord development. In addition, it is widely present in the developing craniofacial cartilage. In contrast, the weakly expressed Ucmab can be first detected at specific sites in the craniofacial cartilage at 96 hpf, but not in notochord. Knockdown of ucmaa leads to severe growth retardation and perturbance of skeletal development. The cartilage of the morphants has a decreased aggrecan and collagen II content. Similar malformations were observed when glutamate γ-carboxylation was inhibited by warfarin treatment, indicating that glutamate γ-carboxylation is crucial for Ucma function and pointing to a role of UCMA in the pathogenesis of "warfarin embryopathies" and other human skeletal diseases.


Assuntos
Ácido 1-Carboxiglutâmico/metabolismo , Cartilagem/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Processamento Alternativo , Sequência de Aminoácidos , Animais , Cartilagem/citologia , Cartilagem/embriologia , Cartilagem/metabolismo , Clonagem Molecular , Colágeno Tipo II/metabolismo , Biologia Computacional , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Proteínas da Matriz Extracelular , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular , Larva , Camundongos , Dados de Sequência Molecular , Notocorda/citologia , Notocorda/efeitos dos fármacos , Notocorda/embriologia , Notocorda/metabolismo , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência , Coloração e Rotulagem , Fatores de Tempo , Varfarina/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
16.
J Cell Sci ; 124(Pt 18): 3137-48, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21852425

RESUMO

SPOC1 (PHF13) is a recently identified protein that has been shown to dynamically associate with somatic chromatin, to modulate chromatin compaction and to be important for proper cell division. Here, we report on the expression of SPOC1 in promyelocytic leukaemia zinc finger (PLZF)-positive undifferentiated spermatogonial stem cells (SSCs) of the mouse testis. To investigate further the biological function of SPOC1 in germ cells we generated Spoc1 mutant mice from a gene-trap embryonic stem cell clone. Postpubertal homozygous Spoc1(-/-) animals displayed a pronounced progressive loss of germ cells from an initially normal germ epithelium of the testis tubules leading to testis hypoplasia. This loss first affected non-SSC stages of germ cells and then, at a later time point, the undifferentiated spermatogonia. Remarkably, successive loss of all germ cells (at >20 weeks of age) was preceded by a transient increase in the number of undifferentiated A(aligned) (A(al)) spermatogonia in younger mice (at >10 weeks of age). The number of primary Spoc1(-/-) gonocytes, the proliferation of germ cells, and the initiation and progression of meiosis was normal, but we noted a significantly elevated level of apoptosis in the Spoc1(-/-) testis. Taken together, the data argue that SPOC1 is indispensable for stem cell differentiation in the testis and for sustained spermatogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Adultas/patologia , Animais , Apoptose/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Espermatogênese/genética , Espermatogônias/patologia , Testículo/patologia , Fatores de Transcrição/genética
17.
Pharmacogenet Genomics ; 21(10): 673-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21750470

RESUMO

Genotyping N-acetyltransferase 2 (NAT2) is of high relevance for individualized dosing of antituberculosis drugs and bladder cancer epidemiology. In this study we compared a recently published tagging single nucleotide polymorphism (SNP) (rs1495741) to the conventional 7-SNP genotype (G191A, C282T, T341C, C481T, G590A, A803G and G857A haplotype pairs) and systematically analysed if novel SNP combinations outperform the latter. For this purpose, we studied 3177 individuals by PCR and phenotyped 344 individuals by the caffeine test. Although the tagSNP and the 7-SNP genotype showed a high degree of correlation (R=0.933, P<0.0001) the 7-SNP genotype nevertheless outperformed the tagging SNP with respect to specificity (1.0 vs. 0.9444, P=0.0065). Considering all possible SNP combinations in a receiver operating characteristic analysis we identified a 2-SNP genotype (C282T, T341C) that outperformed the tagging SNP and was equivalent to the 7-SNP genotype. The 2-SNP genotype predicted the correct phenotype with a sensitivity of 0.8643 and a specificity of 1.0. In addition, it predicted the 7-SNP genotype with sensitivity and specificity of 0.9993 and 0.9880, respectively. The prediction of the NAT2 genotype by the 2-SNP genotype performed similar in populations of Caucasian, Venezuelan and Pakistani background. A 2-SNP genotype predicts NAT2 phenotypes with similar sensitivity and specificity as the conventional 7-SNP genotype. This procedure represents a facilitation in individualized dosing of NAT2 substrates without losing sensitivity or specificity.


Assuntos
Arilamina N-Acetiltransferase/genética , Cafeína/farmacologia , Acetilação , Estudos de Casos e Controles , Etnicidade/genética , Feminino , Genótipo , Técnicas de Genotipagem/métodos , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sensibilidade e Especificidade
18.
Neurogenetics ; 12(2): 155-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21287218

RESUMO

In order to identify novel genes involved in mental retardation/intellectual disability, we focused on a microdeletion reported in a patient with a mild form of Wolf-Hirschhorn syndrome. This patient presented with attention-deficit hyperactivity disorder, some learning and fine motor deficits as well as facial abnormalities. The deleted region included three genes. Here, we report the first characterization of one of these genes, C4ORF48. C4ORF48 encodes a short (139 aa) evolutionarily conserved protein with a predicted signal peptide and two potential dibasic convertase cleavage sites. In mice, we demonstrated expression of the corresponding protein exclusively in brain tissue using an anti-mouse C4Orf48 polyclonal antibody. Detailed RNA in situ hybridization experiments revealed expression of C4Orf48 in different zones during cortical and cerebellar development, as well as in almost all cortical and subcortical regions of the adult mouse brain. Based on the present data, we propose that C4Orf48 probably encodes a novel neuropeptide, which, if hemizygously deleted, may be involved in the observed intellectual and fine motor disabilities and thus in the overall neurological aspects of Wolf-Hirschhorn syndrome.


Assuntos
Cerebelo/embriologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Síndrome de Wolf-Hirschhorn/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células COS , Cerebelo/metabolismo , Chlorocebus aethiops , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Proteínas/genética , Proteínas/fisiologia , Homologia de Sequência de Aminoácidos
19.
Arch Toxicol ; 84(12): 967-78, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21063684

RESUMO

Single nucleotide polymorphism (SNP) rs710521[A], located near TP63 on chromosome 3q28, was identified to be significantly associated with increased bladder cancer risk. To investigate the association of rs710521[A] and bladder cancer by new data and by meta-analysis including all published data, rs710521 was studied in 1,425 bladder cancer cases and 1,740 controls that had not been included in previous studies. Blood samples were collected from 1995 to 2010 in Germany (n = 948/1,258), Hungary (n = 262/65), Venezuela (n = 112/190) and Pakistan (n = 103/227) supplemented by a meta-analysis of 5,695 cases and 40,187 controls. Detection of a A/G substitution (rs710521) on chromosome 3q28, position 191128627 was done via fast real-time polymerase chain reaction (rt-PCR). Rs710521[A] is associated with increased risk in the unadjusted analysis (OR = 1.21; 95% Cl = 1.04-1.40; P = 0.011) and in the recessive model adjusted for age, gender, smoking habits and ethnicity (OR = 1.23; 95% Cl = 1.05-1.44; P = 0.010). No difference between individuals occupationally exposed versus not occupationally exposed to urinary bladder carcinogens was observed concerning the relevance of rs710521[A]. Similarly, rs710521[A] did not confer different susceptibility in smokers and non-smokers. Performing a meta-analysis of 5,695 cases and 40,187 controls including all published studies on rs710521, a convincing association with bladder cancer risk was obtained (OR = 1.18; 95% Cl = 1.12-1.25; P < 0.0001). However, the odds ratio is relatively small.


Assuntos
Cromossomos Humanos Par 3 , Genes , Polimorfismo de Nucleotídeo Único , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/genética , Estudos de Casos e Controles , Feminino , Alemanha , Humanos , Hungria , Masculino , Razão de Chances , Paquistão , Reação em Cadeia da Polimerase , Risco , Fumar/efeitos adversos , Fumar/genética , Fatores de Transcrição , Venezuela
20.
Neurosci Lett ; 472(1): 19-23, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20105452

RESUMO

Complex regional pain syndrome (CRPS) is a condition that is characterized by severe pain and exaggerated neurogenic inflammation, which may develop after injury or surgery. Neurogenic inflammation is mediated by neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P (SP) that are released from nociceptors. Genetic factors may play a role in CRPS as was suggested by the occurrence of familial cases and several genetic association studies investigating mainly the human leukocyte antigen (HLA) system. Here we investigated the role of neutral endopeptidase (NEP), a key enzyme in neuropeptide catabolism. NEP dysfunction resulting in reduced inactivation of neuropeptides may be a possible pathomechanism in CRPS. To this end, we tested a GT-repeat polymorphism in the NEP promoter region as well as 18 tag-SNPs in six linkage disequilibrium (LD) blocks in the NEP gene region in 320 CRPS patients and 376 controls. No significant genetic association was observed. Thus, we conclude that the NEP gene does not seem to be a major risk factor for CRPS.


Assuntos
Síndromes da Dor Regional Complexa/genética , Neprilisina/genética , Região 5'-Flanqueadora , Adulto , Estudos de Casos e Controles , Repetições de Dinucleotídeos , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA