Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Med Chem ; 67(20): 18221-18234, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39378331

RESUMO

The benzoxaborinine scaffold, a homologue of benzoxaborole with an additional carbon atom in the boracycle, shows significant potential in developing new therapeutic agents. This study reports the synthesis, inhibition assays against four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, and anti-melanoma evaluation of 7-aryl(thio)ureido-substituted benzoxaborinines. Some derivatives, particularly compound 11, exhibited potent inhibitory activity (below 65 nM) against hCA IX and XII and stronger antiproliferative effects than SLC-0111 on human melanoma cells under hypoxia. Crystallographic studies of benzoxaborinine 3 adducts with hCA I and II demonstrated the binding mode of this chemotype, revealing that although both benzoxaborinine 3 and benzoxaborole 10 share a similar zinc-binding mode, the expanded ring in benzoxaborinine led to a different orientation within the active site. These findings suggest that benzoxaborinines hold promise for designing novel carbonic anhydrase inhibitors.


Assuntos
Antineoplásicos , Compostos de Boro , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Compostos de Boro/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Melanoma/tratamento farmacológico , Melanoma/patologia , Modelos Moleculares , Relação Estrutura-Atividade , Ácidos Borínicos/síntese química , Ácidos Borínicos/química , Ácidos Borínicos/farmacologia
2.
Int J Biol Macromol ; 282(Pt 2): 136873, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454912

RESUMO

Boronic acids are an interesting but still poorly studied class of carbonic anhydrase inhibitors. Previous investigations proved that derivatives incorporating aromatic, arylalkyl, and arylalkenyl moieties are low micromolar to millimolar inhibitors for several α- and ß-CAs involved in pathologic states. Here we report a high-resolution X-ray study on two classes of boronic acids (phenyl and vinyl) in complex with hCA II. Our results unambiguously clarify the binding mode of these molecules to the human carbonic anhydrase active site, which occurs through their tetrahedral anionic form, regardless of the nature of the organic scaffold. Data here presented contribute to the understanding of the inhibition mechanism of boronic acids that can be fruitfully used for the rational design of novel and effective isozyme-specific carbonic anhydrase inhibitors.

3.
Expert Opin Ther Pat ; 34(6): 401-414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38439633

RESUMO

INTRODUCTION: Antibacterial photodynamic therapy presents a promising alternative to antibiotics, with potential against multidrug-resistant bacteria, offering broad-spectrum action, reduced resistance risk, and improved tissue selectivity. AREAS COVERED: This manuscript reviews patent literature in the field of antibacterial photodynamic therapy through the period of 2019-2023. All data are from the US and European patent databases and SciFinder. EXPERT OPINION: Antibacterial photodynamic therapy (PDT) is an appealing approach for treating bacterial infections, especially biofilm-related ones, by releasing reactive oxygen species (ROS) upon light activation. Its success is driven by a growing variety of photosensitizers (PSs) with tailored properties, like water solubility, controllable surface charge, and ROS generation efficiency. Among them, Aggregation Induced Emission (AIE)-type PSs are promising, demonstrating enhanced efficacy when aggregated in biological environments. However, the penetration of pristine PSs into bacterial biofilms within deep tissues or complex anatomical regions is limited, reducing their antibacterial effectiveness. To address this, nanotechnology has been integrated into antibacterial PDT to synthesize various nano-PSs. This adaptability allows seamless integration with other antimicrobial treatments, offering a comprehensive approach to combat localized infections, especially in dentistry and dermatology. By combining PSs with complementary therapies, antibacterial PDT offers a multifaceted strategy for effective microbial control and management.


Assuntos
Antibacterianos , Infecções Bacterianas , Biofilmes , Patentes como Assunto , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Farmacorresistência Bacteriana Múltipla , Nanotecnologia
4.
Bioorg Chem ; 143: 106976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000350

RESUMO

Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Boro/farmacologia , Anidrases Carbônicas/metabolismo , Isoformas de Proteínas , Compostos de Boro , Relação Estrutura-Atividade
5.
Expert Opin Ther Targets ; 27(9): 817-826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668158

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) is a reactive oxygen species (ROS)-dependent treatment modality which has emerged as an alternative cancer therapy strategy. However, in solid tumors, the therapeutic efficacy of PDT is strongly reduced by hypoxia, a typical feature of many such tumors. The tumor-associated carbonic anhydrases IX (hCA IX) and XII (hCA XII), which are overexpressed under hypoxia are attractive, validated anticancer drug targets in solid tumors. Current challenges in therapeutic design of effective PDT systems aim to overcome the limitation of hypoxia by developing synergistic CA-targeted therapies combining photosensitizers and hCA IX/XII inhibitors. AREA COVERED: In this review, the current literature on the use of hCA IX/XII inhibitors (CAi) for targeting photosensitizing chemical systems useful for PDT against hypoxic solid tumors is summarized, along with recent progress, challenges, and future prospects. EXPERT OPINION: hCA IX/XII-focused photosensitizers have recently provided new generation of compounds of considerable potential. Proof of concept of in vivo efficacy studies suggested enhanced efficacy for CAi-PDT hybrid systems. Further research is needed to deepen our understanding of how hCA IX/hCA XII inhibition can enhance PDT and for obtaining more effective such derivatives.

6.
J Med Chem ; 66(12): 8118-8129, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37283561

RESUMO

Benzoxaborole is currently a scaffold of great relevance in medicinal chemistry. In 2016, it was reported to be a new and valuable chemotype for designing carbonic anhydrase (CA) inhibitors. Herein, using an in silico design, we report the synthesis and characterization of substituted 6-(1H-1,2,3-triazol-1-yl)benzoxaboroles. 6-Azidobenzoxaborole was described for the first time as a molecular platform to prepare libraries of inhibitors by a copper(I)-catalyzed azide-alkyne cycloaddition via a click chemistry strategy. With inhibition constants below 30 nM, some derivatives, such as compound 20, showed efficacy as selective hCA VII and IX inhibitors. The design hypothesis was validated by crystallographic investigation on the hCA II/20 adduct, which provided explanations over the different inhibition behavior observed against the five evaluated hCA isoforms. Overall, this study identified 20 as a new promising lead compound to develop novel anticancer agents targeting the tumor-associated hCA IX but also potent neuropathic pain relievers targeting hCA VII.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Relação Estrutura-Atividade , Antígenos de Neoplasias/química
7.
Expert Opin Drug Discov ; 17(5): 501-512, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193437

RESUMO

INTRODUCTION: Sulfur-containing functional groups are privileged motifs that occur in various pharmacologically effective substances and several natural products. Various functionalities are found with a sulfur atom at diverse oxidation states, as illustrated by thioether, sulfoxide, sulfone, sulfonamide, sulfamate, and sulfamide functions. They are valuable scaffolds in the field of medicinal chemistry and are part of a large array of approved drugs and clinical candidates. AREA COVERED: Herein, the authors review the current research on the development of organosulfur-based drug discovery. This article also covers details of their roles in the new lead compounds reported in the literature over the past five years 2017-2021. EXPERT OPINION: Given its prominent role in medicinal chemistry and its importance in drug discovery, sulfur has attracted continuing interest and has been used in the design of various valuable compounds that demonstrate a variety of biological and pharmacological feature activities. Overall, sulfur's role in medicinal chemistry continues to grow. However, many sulfur functionalities remain underused in small-molecule drug discovery and deserve special attention in the armamentarium for treating diverse diseases. Research efforts are also still required for the development of a synthetic methodology for direct access to these functions and late-stage functionalization.


Assuntos
Química Farmacêutica , Desenho de Fármacos , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Humanos , Sulfonamidas/farmacologia , Enxofre
8.
Expert Opin Ther Pat ; 32(1): 1-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34241566

RESUMO

INTRODUCTION: The hypoxic tumor microenvironment represents a persistent obstacle in the treatment of most solid tumors. In the past years, significant efforts have been made to improve the efficacy of anti-cancer drugs. Therefore, hypoxia-activated prodrugs (HAPs) of chemotherapeutic compounds have attracted widespread interest as a therapeutic means to treat hypoxic tumors. AREAS COVERED: This updated review paper covers key patents published between 2006 and 2021 on the developments of HAP derivatives of anti-cancer compounds. EXPERT OPINION: Despite significant achievements in the development of HAP derivatives of anti-cancer compounds and although many clinical trials have been performed or are ongoing both as monotherapies and as part of combination therapies, there has currently no HAP anti-cancer agent been commercialized into the market. Unsuccessful clinical translation is partly due to the lack of patient stratification based on reliable biomarkers that are predictive of a positive response to hypoxia-targeted therapy.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Hipóxia , Neoplasias/tratamento farmacológico , Patentes como Assunto , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Microambiente Tumoral
9.
Arch Pharm (Weinheim) ; 355(3): e2100405, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34862650

RESUMO

A series of novel N-triazolo-benzene sulfonamides-1,5-benzodiazepines 9a-d and 10d were designed and prepared through the copper-catalyzed azide alkyne cycloaddition click chemistry procedure, reacting the N1 -propargyl-1,5-benzodiazepine 2 and the N1 ,N5 -dipropargyl analog 6 with various benzene sulfonamide azides 8a-d. The synthesized compounds were found to show nanomolar affinity toward relevant isoforms of human carbonic anhydrase such as hCA I, II, IV, VII, IX, and XII. The divalent derivative 10d showed a particularly high inhibitory activity against all hCA isoforms when compared with acetazolamide, and showed potent multivalent effects, better than reported previously for divalent CA inhibitors.


Assuntos
Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Benzodiazepinas/farmacologia , Anidrase Carbônica II , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Relação Estrutura-Atividade
10.
J Enzyme Inhib Med Chem ; 36(1): 561-580, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615947

RESUMO

Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Zinco/farmacologia , Ânions/síntese química , Ânions/química , Ânions/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Zinco/química
12.
ACS Med Chem Lett ; 11(11): 2277-2284, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214840

RESUMO

A series of urea/thiourea substituted benzoxaboroles was investigated for the inhibition of the three carbonic anhydrases encoded by Vibrio cholerae (VchCAα, VchCAß, and VchCAγ). In particular, benzoxaborole derivatives were here first assayed for the inhibition of a γ-class CA, extending the panel of CA classes that benzoxaboroles efficiently target beyond α and ß. Inhibition profiles demonstrated that VchCAα was significantly more inhibited compared to VchCAγ and, in turn, more efficiently modulated than VchCAß. Among the many selective benzoxaborole ligands detected against VchCAα over the off-target hCA II, compound 18, a p-NO2-phenylthiourea derivative, even exhibited a fully selective inhibition profile against the three VchCAs over hCA II. A comprehensive ligand/target interaction study was performed in silico for all three VchCA isoforms providing the first molecular modeling investigation with inhibitors of a γ-class CA to the best of our knowledge. The present study reinforces the rationale behind the use of benzoxaboroles as innovative antibacterial agents with a new mechanism of action, furnishing suggestions for the rational design of new potent and selective inhibitors targeting V. cholerae CAs over human off-target ones.

13.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182416

RESUMO

Cell plasticity is the ability that cells have to modify their phenotype, adapting to the environment. Cancer progression is under the strict control of the the tumor microenvironment that strongly determines its success by regulating the behavioral changes of tumor cells. The cross-talk between cancer and stromal cells and the interactions with the extracellular matrix, hypoxia and acidosis contribute to trigger a new tumor cell identity and to enhance tumor heterogeneity and metastatic spread. In highly aggressive triple-negative breast cancer, tumor cells show a significant capability to change their phenotype under the pressure of the hypoxic microenvironment. In this study, we investigated whether targeting the hypoxia-induced protein carbonic anhydrase IX (CA IX) could reduce triple-negative breast cancer (TNBC) cell phenotypic switching involved in processes associated with poor prognosis such as vascular mimicry (VM) and cancer stem cells (CSCs). The treatment of two TNBC cell lines (BT-549 and MDA-MB-231) with a specific CA IX siRNA or with a novel inhibitor of carbonic anhydrases (RC44) severely impaired their ability to form a vascular-like network and mammospheres and reduced their metastatic potential. In addition, the RC44 inhibitor was able to hamper the signal pathways involved in triggering VM and CSC formation. These results demonstrate that targeting hypoxia-induced cell plasticity through CA IX inhibition could be a new opportunity to selectively reduce VM and CSCs, thus improving the efficiency of existing therapies in TNBC.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Hipóxia Celular/fisiologia , Plasticidade Celular/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
14.
Metabolites ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066524

RESUMO

The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.

16.
Molecules ; 25(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443462

RESUMO

Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Inibidores da Anidrase Carbônica/química , Neoplasias/tratamento farmacológico , Sulfonamidas/química , Inibidores da Anidrase Carbônica/farmacologia , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Isoenzimas/química , Isoenzimas/genética , Estrutura Molecular , Neoplasias/genética , Neoplasias/patologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Benzenossulfonamidas
17.
Cells ; 9(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151059

RESUMO

The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis. Here we review the role of the human ribosome as a medical target in cancer, and how functional and structural analysis combined with chemical synthesis of new inhibitors can synergize. The possible existence of oncoribosomes is also discussed. The emerging idea is that targeting the human ribosome could not only allow the interference with cancer cell addiction towards protein synthesis and possibly induce their death but may also be highly valuable to decrease the levels of oncogenic proteins that display a high turnover rate (MYC, MCL1). Cryo-electron microscopy (cryo-EM) is an advanced method that allows the visualization of human ribosome complexes with factors and bound inhibitors to improve our understanding of their functioning mechanisms mode. Cryo-EM structures could greatly assist the foundation phase of a novel drug-design strategy. One goal would be to identify new specific and active molecules targeting the ribosome in cancer such as derivatives of cycloheximide, a well-known ribosome inhibitor.


Assuntos
Microscopia Crioeletrônica , Desenho de Fármacos , Neoplasias/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Biossíntese de Proteínas/fisiologia , Ribossomos/química , Ribossomos/genética
18.
J Enzyme Inhib Med Chem ; 35(1): 109-117, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687859

RESUMO

With the aim to obtain novel compounds possessing both strong affinity against human carbonic anhydrases and low toxicity, we synthesised novel thiourea and sulphonamide derivatives 3, 4 and 10, and studied their in vitro inhibitory properties against human CA I, CA II and CA IX. We also evaluated the toxicity of these compounds using zebrafish larvae. Among the three compounds, derivative 4 showed efficient inhibition against hCA II (KI = 58.6 nM). Compound 10 showed moderate inhibition against hCA II (KI = 199.2 nM) and hCA IX (KI = 147.3 nM), whereas it inhibited hCA I less weakly at micromolar concentrations (KI = 6428.4 nM). All other inhibition constants for these compounds were in the submicromolar range. The toxicity evaluation studies showed no adverse effects on the zebrafish larvae. Our study suggests that these compounds are suitable for further preclinical characterisation as potential inhibitors of hCA I, II and IX.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Nitroimidazóis/farmacologia , Animais , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Larva/efeitos dos fármacos , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Relação Estrutura-Atividade , Peixe-Zebra
19.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661796

RESUMO

Biomolecular recognition using a multivalent strategy has been successfully applied, this last decade on several biological targets, especially carbohydrate-processing enzymes, proteases, and phosphorylases. This strategy is based on the fact that multivalent interactions of several inhibitory binding units grafted on a presentation platform may enhance the binding affinity and selectivity. The zinc metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) are considered as drug targets for several pathologies, and different inhibitors found clinical applications as diuretics, antiglaucoma agents, anticonvulsants, and anticancer agents/diagnostic tools. Their main drawback is related to the lack of isoform selectivity leading to serious side effects for all pathologies in which they are employed. Thus, the multivalent approach may open new opportunities in the drug design of innovative isoform-selective carbonic anhydrase inhibitors with biomedical applications.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/toxicidade , Anidrases Carbônicas/metabolismo , Dendrímeros/química , Desenho de Fármacos , Ouro/química , Humanos , Isoenzimas/metabolismo , Nanopartículas/química , Nanotubos/química , Poliaminas/química , Zinco/química
20.
ACS Med Chem Lett ; 10(8): 1205-1210, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413806

RESUMO

The synthesis, characterization, and biological evaluation of a series of compounds incorporating two or three benzoxaborole moieties is reported. Three different synthetic strategies were used to explore within this series as much chemical space as possible, all starting from the 6-aminobenzoxaborole reagent: amide coupling, imine bond formation, and squarate coupling. Eleven new compounds were isolated in pure form, and single crystals were obtained for two of them. These compounds were then evaluated as carbonic anhydrase inhibitors against the cytosolic hCA I and II and the transmembrane hCA IV, IX, and XII isoforms. While the benzoxaborole scaffold has been recently introduced as a new chemotype for carbonic anhydrase inhibition, these new multivalent derivatives exhibited superior inhibitory activity against the tumor-associated isoform hCA IX. In particular, compared to monovalent 6-aminobenzoxaborole (K I = 813 nM) and 6-carboxybenzoxaborole (K I = 400 nM), derivative 2h characterized by a glutamic acid structural core and two benzoxaborole moieties was found to be more potent (K I = 64 nM) and more selective over human hCA II.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA