Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Commun Med (Lond) ; 4(1): 86, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750213

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive childhood-onset neuromuscular disease with a carrier frequency of ~1:50. Mitochondrial abnormalities are widespread in patients with SMA. Disease carriers for SMA (i.e., the parents of patients with SMA) are viewed as asymptomatic for SMA disease. As far as we are aware, mitochondria have not been previously examined in SMA carriers, yet as they are maternally inherited, mitochondrial function in SMA carriers has putative implications for disease pathogenesis. METHODS: Fibroblast cell lines derived from SMA carriers and controls were obtained from two different sources and cultured under standard conditions. The mitochondrial membrane potential, reactive oxygen species (ROS) production, citrate synthase activity, and bioenergetic analysis were examined as measures of mitochondrial function. The mitochondrial genome was also sequenced in a subset of the fibroblast cell lines to identify any mitochondrial DNA variants. RESULTS: Here, we show a depolarized mitochondrial membrane potential, increased levels of reactive oxygen species, and reduced citrate synthase activity in SMA carriers compared with controls. A likely pathogenic variant in the MT-CO3 gene (which encodes subunit III of cytochrome c oxidase) was also identified in a paternal carrier. CONCLUSIONS: This study was conducted as a preliminary investigation of mitochondrial function in SMA carriers. Our findings suggest that disease carriers of SMA show differences in mitochondrial function, indicative of a subclinical mitochondrial phenotype. Further investigation in a larger sample set is warranted.


Spinal muscular atrophy (SMA) is a disease that mostly affects children in which the muscles become weaker over time, and often leads to death in untreated individuals. It is caused by a defective gene that children often inherit from their parents. The parents of children with SMA are known as disease carriers if they do not show any symptoms of SMA themselves. We studied skin cells from the parents of people with SMA and found changes in a component of the cells called the mitochondria. These changes are not normally present in healthy individuals. Further work is needed to fully understand the implications of our findings for those with SMA and their parents.

2.
Genet Med ; 26(6): 101117, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38459834

RESUMO

PURPOSE: We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS: The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS: All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION: We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.

3.
JBMR Plus ; 8(1): ziad009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38549711

RESUMO

PLS3 loss-of-function mutations in humans and mice cause X-linked primary osteoporosis. However, it remains largely unknown how PLS3 mutations cause osteoporosis and which function PLS3 plays in bone homeostasis. A recent study showed that ubiquitous Pls3 KO in mice results in osteoporosis. Mainly osteoclasts were impacted in their function However, it has not been proven if osteoclasts are the major cell type affected and responsible for osteoporosis development in ubiquitous Pls3 KO mice. Here, we generated osteoclast-specific Pls3 KO mice. Additionally, we developed a novel polyclonal PLS3 antibody that showed specific PLS3 loss in immunofluorescence staining of osteoclasts in contrast to previously available antibodies against PLS3, which failed to show PLS3 specificity in mouse cells. Moreover, we demonstrate that osteoclast-specific Pls3 KO causes dramatic increase in resorptive activity of osteoclasts in vitro. Despite these findings, osteoclast-specific Pls3 KO in vivo failed to cause any osteoporotic phenotype in mice as proven by micro-CT and three-point bending test. This demonstrates that the pathomechanism of PLS3-associated osteoporosis is highly complex and cannot be reproduced in a system singularly focused on one cell type. Thus, the loss of PLS3 in alternative bone cell types might contributes to the osteoporosis phenotype in ubiquitous Pls3 KO mice.

4.
Neuromuscul Disord ; 34: 114-122, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183850

RESUMO

The 270th ENMC workshop aimed to develop a common procedure to optimize the reliability of SMN2 gene copy number determination and to reinforce collaborative networks between molecular scientists and clinicians. The workshop involved neuromuscular and clinical experts and representatives of patient advocacy groups and industry. SMN2 copy number is currently one of the main determinants for therapeutic decision in SMA patients: participants discussed the issues that laboratories may encounter in this molecular test and the cruciality of the accurate determination, due the implications as prognostic factor in symptomatic patients and in individuals identified through newborn screening programmes. At the end of the workshop, the attendees defined a set of recommendations divided into four topics: SMA molecular prognosis assessment, newborn screening for SMA, SMN2 copies and treatments, and modifiers and biomarkers. Moreover, the group draw up a series of recommendations for the companies manufacturing laboratory kits, that will help to minimize the risk of errors, regardless of the laboratories' expertise.


Assuntos
Atrofia Muscular Espinal , Proteína 2 de Sobrevivência do Neurônio Motor , Conferências de Consenso como Assunto , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Dosagem de Genes , Prognóstico , Biomarcadores/análise
5.
J Proteome Res ; 22(9): 3081-3095, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585105

RESUMO

In a currently 13-year-old girl of consanguineous Turkish parents, who developed unsteady gait and polyneuropathy at the ages of 3 and 6 years, respectively, we performed whole genome sequencing and identified a biallelic missense variant c.424C>T, p.R142W in glypican 1 (GPC1) as a putative disease-associated variant. Up to date, GPC1 has not been associated with a neuromuscular disorder, and we hypothesized that this variant, predicted as deleterious, may be causative for the disease. Using mass spectrometry-based proteomics, we investigated the interactome of GPC1 WT and the missense variant. We identified 198 proteins interacting with GPC1, of which 16 were altered for the missense variant. This included CANX as well as vacuolar ATPase (V-ATPase) and the mammalian target of rapamycin complex 1 (mTORC1) complex members, whose dysregulation could have a potential impact on disease severity in the patient. Importantly, these proteins are novel interaction partners of GPC1. At 10.5 years, the patient developed dilated cardiomyopathy and kyphoscoliosis, and Friedreich's ataxia (FRDA) was suspected. Given the unusually severe phenotype in a patient with FRDA carrying only 104 biallelic GAA repeat expansions in FXN, we currently speculate that disturbed GPC1 function may have exacerbated the disease phenotype. LC-MS/MS data are accessible in the ProteomeXchange Consortium (PXD040023).


Assuntos
Ataxia de Friedreich , Proteômica , Humanos , Ataxia , Cromatografia Líquida , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Glipicanas/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Espectrometria de Massas em Tandem , Feminino , Adolescente
6.
Acta Neuropathol ; 146(3): 477-498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369805

RESUMO

GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética , Domínio Tudor
7.
Nat Commun ; 14(1): 999, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890170

RESUMO

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Assuntos
Actinas , Tirosina-tRNA Ligase , Animais , Humanos , Actinas/metabolismo , Doença de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-tRNA Ligase/genética , Mutação , RNA de Transferência , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Linhagem Celular Tumoral
8.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835624

RESUMO

For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Camundongos , Animais , Humanos , Atrofia Muscular Espinal/genética , Neurocalcina , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Oligonucleotídeos/farmacologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor
9.
Am J Hum Genet ; 110(3): 442-459, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812914

RESUMO

Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.


Assuntos
Epigênese Genética , Atrofia Muscular Espinal , Feminino , Humanos , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas dos Microfilamentos/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética
10.
J Neuromuscul Dis ; 10(1): 55-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463459

RESUMO

Now that targeted therapies for spinal muscular atrophy are available, attempts are being made worldwide to include screening for spinal muscular atrophy in general newborn screening. In Germany, after pilot projects from 2018-2021, it was included in the general newborn screening from October 2021. To ensure a smooth transition, criteria for follow-up were developed together with key stakeholders. At the beginning of the transition to nationwide screening, false positive findings were reported in 3 patients. After optimization of the screening method in the laboratories concerned, all findings have been subsequently confirmed. On average, the first presentation to a neuromuscular center occurred on day 12 of life, and in patients with 2 or 3 SMN2 copies, therapy started on day 26 of life. Compared with the pilot project, there was no significant delay in timing.


Assuntos
Atrofia Muscular Espinal , Recém-Nascido , Humanos , Projetos Piloto , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/terapia , Triagem Neonatal/métodos , Alemanha , Tempo
11.
Brain ; 146(2): 534-548, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35979925

RESUMO

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555492

RESUMO

Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell's sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer's, Parkinson's, amyotrophic lateral sclerosis and Friedreich's ataxia.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Oxirredução , Proteínas/metabolismo , Homeostase
13.
EMBO J ; 41(22): e110963, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36217825

RESUMO

Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.


Assuntos
Neurônios , Sinapses , Camundongos , Animais , Sinapses/metabolismo , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transdução de Sinais , Autofagia
14.
Cells ; 11(17)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36078032

RESUMO

Most research to characterise the molecular consequences of spinal muscular atrophy (SMA) has focused on SMA I. Here, proteomic profiling of skin fibroblasts from severe (SMA I), intermediate (SMA II), and mild (SMA III) patients, alongside age-matched controls, was conducted using SWATH mass spectrometry analysis. Differentially expressed proteomic profiles showed limited overlap across each SMA type, and variability was greatest within SMA II fibroblasts, which was not explained by SMN2 copy number. Despite limited proteomic overlap, enriched canonical pathways common to two of three SMA severities with at least one differentially expressed protein from the third included mTOR signalling, regulation of eIF2 and eIF4 signalling, and protein ubiquitination. Network expression clustering analysis identified protein profiles that may discriminate or correlate with SMA severity. From these clusters, the differential expression of PYGB (SMA I), RAB3B (SMA II), and IMP1 and STAT1 (SMA III) was verified by Western blot. All SMA fibroblasts were transfected with an SMN-enhanced construct, but only RAB3B expression in SMA II fibroblasts demonstrated an SMN-dependent response. The diverse proteomic profiles and pathways identified here pave the way for studies to determine their utility as biomarkers for patient stratification or monitoring treatment efficacy and for the identification of severity-specific treatments.


Assuntos
Atrofia Muscular Espinal , Proteoma , Western Blotting , Fibroblastos/metabolismo , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , Proteômica
15.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142791

RESUMO

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.


Assuntos
Atrofia Muscular Espinal , Adulto , Animais , Modelos Animais de Doenças , Humanos , Recém-Nascido , Mitocôndrias/genética , Proteínas Mitocondriais , Atrofia Muscular Espinal/terapia , Proteínas de Ligação a RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
16.
Cell Mol Life Sci ; 79(10): 526, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136249

RESUMO

CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA-protein interactions.


Assuntos
Proteínas de Ciclo Celular , Agregados Proteicos , Ataxia , Proteínas de Ciclo Celular/metabolismo , Criança , Humanos , Mutação , RNA Mensageiro/metabolismo
17.
Nucleic Acids Res ; 50(21): 12400-12424, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947650

RESUMO

Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.


Assuntos
Metiltransferases , Neurônios Motores , RNA Nuclear Pequeno , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fenótipo , RNA Nuclear Pequeno/metabolismo , Metiltransferases/metabolismo
18.
Eur J Neurol ; 29(7): 2084-2096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35318785

RESUMO

BACKGROUND AND PURPOSE: The therapeutic landscape of spinal muscular atrophy (SMA) has changed dramatically during the past 4 years, but treatment responses differ remarkably between individuals, and therapeutic decision-making remains challenging, underlining the persistent need for validated biomarkers. METHODS: We applied untargeted proteomic analyses to determine biomarkers in cerebrospinal fluid (CSF) samples of SMA patients under treatment with nusinersen. Identified candidate proteins were validated in CSF samples of SMA patients by Western blot and enzyme-linked immunosorbent assay. Furthermore, levels of peripheral neurofilament heavy and light chain were determined. RESULTS: Untargeted proteomic analysis of CSF samples of three SMA type 1 patients revealed the lysosomal protease cathepsin D as a candidate biomarker. Subsequent validation analysis in a larger cohort of 31 pediatric SMA patients (type 1, n = 12; type 2, n = 9; type 3, n = 6; presymptomatically treated, n = 4; age = 0-16 years) revealed a significant decline of cathepsin D levels in SMA patients aged ≥2 months at the start of treatment. Although evident in all older age categories, this decline was only significant in the group of patients who showed a positive motor response. Moreover, downregulation of cathepsin D was evident in muscle biopsies of SMA patients. CONCLUSIONS: We identified a decline of cathepsin D levels in CSF samples of SMA patients under nusinersen treatment that was more pronounced in the group of "treatment responders" than in "nonresponders." We believe that our results indicate a suitability of cathepsin D levels as a possible biomarker in SMA also in older patients, in combination with analysis of peripheral neurofilament light chain in adolescents or alone in adult patients.


Assuntos
Atrofia Muscular Espinal , Proteômica , Adolescente , Adulto , Idoso , Biomarcadores/líquido cefalorraquidiano , Catepsina D/uso terapêutico , Criança , Humanos , Oligonucleotídeos , Proteômica/métodos
20.
iScience ; 24(11): 103376, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34825141

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced survival motor neuron (SMN) protein. Recently, SMN dysfunction has been linked to individual aspects of motor circuit pathology in a severe SMA mouse model. To determine whether these disease mechanisms are conserved, we directly compared the motor circuit pathology of three SMA mouse models. The severe SMNΔ7 model exhibits vast motor circuit defects, including degeneration of motor neurons, spinal excitatory synapses, and neuromuscular junctions (NMJs). In contrast, the Taiwanese model shows very mild motor neuron pathology, but early central synaptic loss. In the intermediate Smn 2B/- model, strong pathology of central excitatory synapses and NMJs precedes the late onset of p53-dependent motor neuron death. These pathological events correlate with SMN-dependent splicing dysregulation of specific mRNAs. Our study provides a knowledge base for properly tailoring future studies and identifies central excitatory synaptopathy as a key feature of motor circuit pathology in SMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA