Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Malar J ; 19(1): 310, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859210

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the primary malaria prevention and control intervention in many parts of sub-Saharan Africa. While LLINs are expected to last at least 3 years under normal use conditions, they can lose effectiveness because they fall out of use, are discarded, repurposed, physically damaged, or lose insecticidal activity. The contributions of these different interrelated factors to durability of nets and their protection against malaria have been unclear. METHODS: Starting in 2009, LLIN durability studies were conducted in seven countries in Africa over 5 years. WHO-recommended measures of attrition, LLIN use, insecticidal activity, and physical integrity were recorded for eight different net brands. These data were combined with analyses of experimental hut data on feeding inhibition and killing effects of LLINs on both susceptible and pyrethroid resistant malaria vectors to estimate the protection against malaria transmission-in terms of vectorial capacity (VC)-provided by each net cohort over time. Impact on VC was then compared in hypothetical scenarios where one durability outcome measure was set at the best possible level while keeping the others at the observed levels. RESULTS: There was more variability in decay of protection over time by country than by net brand for three measures of durability (ratios of variance components 4.6, 4.4, and 1.8 times for LLIN survival, use, and integrity, respectively). In some countries, LLIN attrition was slow, but use declined rapidly. Non-use of LLINs generally had more effect on LLIN impact on VC than did attrition, hole formation, or insecticide loss. CONCLUSIONS: There is much more variation in LLIN durability among countries than among net brands. Low levels of use may have a larger impact on effectiveness than does variation in attrition or LLIN degradation. The estimated entomological effects of chemical decay are relatively small, with physical decay probably more important as a driver of attrition and non-use than as a direct cause of loss of effect. Efforts to maximize LLIN impact in operational settings should focus on increasing LLIN usage, including through improvements in LLIN physical integrity. Further research is needed to understand household decisions related to LLIN use, including the influence of net durability and the presence of other nets in the household.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Angola , Benin , Gâmbia , Quênia , Malária/transmissão , Malaui , Modelos Teóricos , Moçambique , Senegal
2.
Malar J ; 17(1): 94, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471881

RESUMO

BACKGROUND: In this semi-field study, a new polymer-enhanced deltamethrin formulation, K-Othrine® PolyZone, was compared to a standard deltamethrin product for residual activity against a susceptible strain of laboratory-reared Anopheles gambiae using standard WHO cone bioassays. METHODS: Residual insecticide efficacy was recorded after exposure to metal, cement and wood panels maintained in experimental huts in sub-tropical environmental conditions in north central Florida, USA, and panels stored in a climate controlled chamber located at the Centers for Disease Control and Prevention, Georgia, USA. CONCLUSIONS: K-Othrine® PolyZone demonstrated 100% control on metal and cement panels 1 year post application and > 80% control on wood panels up to 6 mo. The new formulation should be considered for use in indoor residual spray programmes requiring long-term control of malaria vectors.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Materiais de Construção , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Bioensaio , Interações Medicamentosas , Florida , Georgia , Análise de Sobrevida
3.
Malar J ; 16(1): 469, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-29151024

RESUMO

BACKGROUND: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. However, the development of insecticide resistance and its implications for operational failure of preventative strategies are of concern. The aim of this study was to characterize insecticide resistance among Anopheles arabiensis populations in Ethiopia and describe temporal and spatial patterns of resistance between 2012 and 2016. METHODS: Between 2012 and 2016, resistance status of An. arabiensis was assessed annually during the long rainy seasons in study sites from seven of the nine regions in Ethiopia. Insecticide resistance levels were measured with WHO susceptibility tests and CDC bottle bioassays using insecticides from four chemical classes (organochlorines, pyrethroids, organophosphates and carbamates), with minor variations in insecticides tested and assays conducted between years. In selected sites, CDC synergist assays were performed by pre-exposing mosquitoes to piperonyl butoxide (PBO). In 2015 and 2016, mosquitoes from DDT and deltamethrin bioassays were randomly selected, identified to species-level and screened for knockdown resistance (kdr) by PCR. RESULTS: Intense resistance to DDT and pyrethroids was pervasive across Ethiopia, consistent with historic use of DDT for IRS and concomitant increases in insecticide-treated net coverage over the last 15 years. Longitudinal resistance trends to malathion, bendiocarb, propoxur and pirimiphos-methyl corresponded to shifts in the national insecticide policy. By 2016, resistance to the latter two insecticides had emerged, with the potential to jeopardize future long-term effectiveness of vector control activities in these areas. Between 2015 and 2016, the West African (L1014F) kdr allele was detected in 74.1% (n = 686/926) of specimens, with frequencies ranging from 31 to 100% and 33 to 100% in survivors from DDT and deltamethrin bioassays, respectively. Restoration of mosquito susceptibility, following pre-exposure to PBO, along with a lack of association between kdr allele frequency and An. arabiensis mortality rate, both indicate metabolic and target-site mutation mechanisms are contributing to insecticide resistance. CONCLUSIONS: Data generated by this study will strengthen the National Malaria Control Programme's insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , Etiópia , Feminino , Estações do Ano , Análise Espacial
4.
PLoS Negl Trop Dis ; 10(10): e0005040, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768689

RESUMO

Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS) regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances). The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501), whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284) and 78% (N = 229), respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253), 83% (N = 277) and 78% (N = 234), respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/microbiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Wolbachia/fisiologia , Animais , Feminino , Controle de Insetos , Masculino , Controle Biológico de Vetores
5.
PLoS Negl Trop Dis ; 10(6): e0004759, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27362709

RESUMO

The release of Wolbachia infected mosquitoes is likely to form a key component of disease control strategies in the near future. We investigated the potential of using near-infrared spectroscopy (NIRS) to simultaneously detect and identify two strains of Wolbachia pipientis (wMelPop and wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. Our aim is to find faster, cheaper alternatives for monitoring those releases than the molecular diagnostic techniques that are currently in use. Our findings indicate that NIRS can differentiate females and males infected with wMelPop from uninfected wild type samples with an accuracy of 96% (N = 299) and 87.5% (N = 377), respectively. Similarly, females and males infected with wMel were differentiated from uninfected wild type samples with accuracies of 92% (N = 352) and 89% (N = 444). NIRS could differentiate wMelPop and wMel transinfected females with an accuracy of 96.6% (N = 442) and males with an accuracy of 84.5% (N = 443). This non-destructive technique is faster than the standard polymerase chain reaction diagnostic techniques. After the purchase of a NIRS spectrometer, the technique requires little sample processing and does not consume any reagents.


Assuntos
Aedes/microbiologia , Mosquitos Vetores/microbiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Wolbachia/classificação , Wolbachia/isolamento & purificação , Animais , Feminino , Interações Hospedeiro-Parasita , Masculino , Controle de Mosquitos , Análise de Regressão , Fatores de Tempo , Wolbachia/fisiologia
6.
Parasit Vectors ; 9: 266, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151229

RESUMO

BACKGROUND: With the emergence and spread of vector resistance to pyrethroids and DDT in Africa, several countries have recently switched or are considering switching to carbamates and/or organophosphates for indoor residual spraying (IRS). However, data collected on the residual life of bendiocarb used for IRS in some areas indicate shorter than expected bio-efficacy. This study evaluated the effect of pH and wall type on the residual life of the carbamates bendiocarb and propoxur as measured by the standard World Health Organization (WHO) cone bioassay test. METHODS: In phase I of this study, bendiocarb and propoxur were mixed with buffered low pH (pH 4.3) local water and non-buffered high pH (pH 8.0) local water and sprayed on two types of wall surface, mud and dung, in experimental huts. In the six month phase II study, the two insecticides were mixed with high pH local water and sprayed on four different surfaces: painted, dung, mud and mud pre-wetted with water. The residual bio-efficacy of the insecticides was assessed monthly using standard WHO cone bioassay tests. RESULTS: In phase I, bendiocarb mixed with high pH water killed more than 80% of susceptible Anopheles arabiensis mosquitoes for two months on both dung and mud surfaces. On dung surfaces, the 80% mortality threshold was achieved for three months when the bendiocarb was mixed with low pH water and four months when it was mixed with high pH water. Propoxur lasted longer than bendiocarb on dung surfaces, staying above the 80% mortality threshold for four and five months when mixed with high and low pH water, respectively. Phase II results also showed that the type of surface sprayed has a significant impact on the bio-efficacy of bendiocarb. Keeping the spray water constant at the same high pH of 8.0, bendiocarb killed 100% of exposed mosquitoes on impervious painted surfaces for the six months of the study period compared with less than one month on mud surfaces. CONCLUSIONS: Mixing the insecticides in alkaline water did not reduce the residual bio-efficacy of bendiocarb. However, bendiocarb performed much better on impervious (painted) surfaces than on porous dung or mud ones. Propoxur was less affected by wall type than was bendiocarb. Studies on the interaction between wall materials, soil, humidity, temperature and pH and the residual bio-efficacy of new and existing insecticides are recommended prior to their wide use in IRS.


Assuntos
Inseticidas/química , Fenilcarbamatos/química , Animais , Anopheles/efeitos dos fármacos , Etiópia , Fezes , Habitação , Resíduos de Praguicidas/química , Propoxur/química , Solo/química , Propriedades de Superfície , Fatores de Tempo , Água/química
7.
Emerg Infect Dis ; 22(5): 773-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27089119

RESUMO

Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.


Assuntos
Implementação de Plano de Saúde , Planejamento em Saúde , Resistência a Inseticidas , Animais , Bases de Dados Factuais , Implementação de Plano de Saúde/legislação & jurisprudência , Implementação de Plano de Saúde/métodos , Implementação de Plano de Saúde/organização & administração , Planejamento em Saúde/legislação & jurisprudência , Planejamento em Saúde/organização & administração , Humanos , Controle de Insetos , Insetos Vetores , Malária/prevenção & controle , Malária/transmissão , Vigilância em Saúde Pública , Zâmbia
8.
Malar J ; 15: 106, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26891696

RESUMO

BACKGROUND: A key goal of malaria control is to achieve universal access to, and use of, long-lasting insecticidal nets (LLINs) among people at risk for malaria. Quantifying the number of LLINs needed to achieve and maintain universal coverage requires knowing when nets need replacement. Longitudinal studies have observed physical deterioration in LLINs well before the assumed net lifespan of 3 years. The objective of this study was to describe attrition, physical integrity and insecticide persistence of LLINs over time to assist with better quantification of nets needing replacement. METHODS: 999 LLINs distributed in 2011 in two highly endemic provinces in Zambia were randomly selected, and were enrolled at 12 months old. LLINs were followed every 6 months up to 30 months of age. Holes were counted and measured (finger, fist, and head method) and a proportional hole index (pHI) was calculated. Households were surveyed about net care and repair and if applicable, reasons for attrition. Functional survival was defined as nets with a pHI <643 and present for follow-up. At 12 and 24 months of age, 74 LLINs were randomly selected for examination of insecticidal activity and content using bioassay and chemical analysis methods previously described by the World Health Organization (WHO). RESULTS: A total of 999 LLINs were enrolled; 505 deltamethrin-treated polyester nets and 494 permethrin-treated polyethylene nets. With 74 used to examine insecticide activity, 925 were available for full follow-up. At 30 months, 325 (33 %) LLINs remained. Net attrition was primarily due to disposal (29 %). Presence of repairs and use over a reed mat were significantly associated with larger pHIs. By 30 months, only 56 % of remaining nets met criteria for functional survival. A shorter functional survival was associated with having been washed. At 24 months, nets had reduced insecticidal activity (57 % met WHO minimal criteria) and content (5 % met WHO target insecticide content). CONCLUSIONS: The median functional survival time for LLINs observed the study was 2.5-3 years and insecticide activity and content were markedly decreased by 2 years. A better measure of net survival incorporating insecticidal field effectiveness, net physical integrity, and attrition is needed.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/normas , Inseticidas/análise , Humanos , Estudos Longitudinais , Malária/prevenção & controle , Fatores de Tempo , Zâmbia
9.
J Med Entomol ; 53(3): 699-702, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26718717

RESUMO

Emerging and re-emerging vector-borne diseases such as chikungunya and dengue and associated Aedes vectors are expanding their historical ranges; thus, there is a need for the development of novel insecticides for use in vector control programs. The mosquito toxicity of a novel insecticide and repellent consisting of medium-chain carbon fatty acids (C8910) was examined. Determination of LC50 and LC90 was made against colony-reared Aedes aegypti (L.) and Aedes albopictus (Skuse) using probit analysis on mortality data generated by Centers for Disease Control and Prevention bottle bioassays. Six different concentrations of C8910 + silicone oil yielded an LC50 of 160.3 µg a.i/bottle (147.6-182.7) and LC90 of 282.8 (233.2-394.2) in Ae. aegypti; five concentrations yielded an LC50 of 125.4 (116.1-137.6) and LC90 of 192.5 (165.0-278.9) in Ae. albopictus. Further development of C8910 and similar compounds could provide vector control specialists novel insecticides for controlling insect disease vectors.


Assuntos
Aedes/efeitos dos fármacos , Ácidos Graxos/toxicidade , Insetos Vetores/efeitos dos fármacos , Inseticidas/toxicidade , Silicones/toxicidade , Aedes/crescimento & desenvolvimento , Animais , Insetos Vetores/crescimento & desenvolvimento
10.
J Am Mosq Control Assoc ; 31(3): 248-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26375906

RESUMO

Traditional sources of carbon dioxide (CO2), dry ice, and compressed gas, were tested against 3 combinations of food-grade reagents known to generate CO2using a compact, lightweight generator delivery system with Centers for Disease Control and Prevention light traps. Three 6 × 6 Latin square trials were completed near the Florida Gulf Coast in the Lower Suwannee Wildlife Refuge during the summer of 2013, collecting a total of 31,632 female mosquitoes. Treatments included dry ice, compressed CO2gas, a control trap (no CO2), citric acid + sodium bicarbonate, vinegar + sodium bicarbonate, and yeast + sugar. Decreasing order of trap collections (treatment mean number of mosquitoes per trap night ± standard error) were dry ice 773.5 (± 110.1) > compressed gas 440.7 (± 42.3) > citric acid + sodium bicarbonate 197.6 (± 30.4), yeast + sugar 153.6 (± 27.4) > vinegar + sodium bicarbonate 109.6 (± 16.2) > control 82.4 (± 14.0). A 2-way Kruskal-Wallis analysis by treatment, site, and treatment × site interaction identified significant differences between all treatments. Although dry ice and compressed CO2gas collected significantly more mosquitoes than other combinations (P < 0.05), use of citric acid and sodium bicarbonate or yeast and sugar greatly outperformed unbaited traps and offer a good alternative to dry ice and compressed gas in areas where these agents are not readily available or are difficult to obtain due to logistical constraints. An inexpensive, portable CO2generator for use with food-grade reagents is described.


Assuntos
Dióxido de Carbono/fisiologia , Culicidae/fisiologia , Controle de Mosquitos/métodos , Animais , Gelo-Seco , Feminino , Florida , Luz , Controle de Mosquitos/instrumentação , Saccharomyces cerevisiae/metabolismo
11.
Malar J ; 14: 239, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26054336

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are a mainstay of malaria prevention in Africa. More LLINs are available now than in any time previously due to increases in funding for malaria control. LLINs are expected to last three to five years before they need to be replaced. Reports of nets lasting less than three years are frequent in Zambia, which, if true, will increase the number of LLINs needed to maintain universal coverage. METHODS: This study collected nets distributed during mass distribution campaigns. One net was collected from each participating home in 12 districts in 2010 and all nets were examined for holes. One household member was surveyed about net use and care. RESULTS: The study collected 713 polyester nets with a median age of 31 months (range 27-44 months, interquartile (IQR) range: 29-36 months), median number of holes was 17 (IQR: 5-33), and median total hole size was 88.3 sq cm (IQR: 14.5-360.4). The median total number of holes did differ by age of the net, from 27-44 months, but not in a linear fashion. The difference in the number of holes in the newest and oldest nets was not statistically significant. The mean deltamethrin level for all nets was 23 mg/sq m (≥8 mg/sq m is considered effective). There was a larger total hole area in the lower half of the nets (repeat measures ANOVA, F=228.43, df=2, p<0.0001) compared to the upper half and roof of the net. Only 8.7% of nets had evidence of repairs. CONCLUSIONS: At 27-30 months, LLINs already had a large total hole surface area that was equivalent to the oldest nets observed. Nets were often tucked under reed mats which may explain the finding that the largest hole area was found in the lower half of the net. Studies need to be conducted prospectively to determine when physical deterioration occurs and why nets are discarded. Re-enforcing the lower half of the sides of LLINs may help decrease holes.


Assuntos
Mosquiteiros Tratados com Inseticida/normas , Inseticidas/análise , Malária/prevenção & controle , Controle de Mosquitos , Animais , Estudos Transversais , Humanos , Nitrilas/análise , Piretrinas/análise , Zâmbia
12.
Am J Trop Med Hyg ; 92(5): 1070-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25802436

RESUMO

Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (≥ 7 days) are of greatest epidemiological significance due to the 7-day extrinsic incubation period of the virus. Age-grading of female mosquitoes is necessary to identify post-intervention changes in mosquito population age structure. We developed models using near-infrared spectroscopy (NIRS) to age-grade adult female Ae. aegypti. To determine if diet affects the ability of NIRS models to predict age, two identical larval groups were fed either fish food or infant cereal. Adult females were separated and fed sugar water ± blood, resulting in four experimental groups. Females were killed 1, 4, 7, 10, 13, or 16 days postemergence. The head/thorax of each mosquito was scanned using a near-infrared spectrometer. Scans from each group were analyzed, and multiple models were developed using partial least squares regression. The best model included all experimental groups, and positively predicted the age group (< or ≥ 7 days) of 90.2% mosquitoes. These results suggest both larval and adult diets can affect the ability of NIRS models to accurately assign age categories to female Ae. aegypti.


Assuntos
Aedes/fisiologia , Vírus da Dengue/fisiologia , Dengue/virologia , Insetos Vetores/fisiologia , Aedes/virologia , Animais , Dieta , Feminino , Insetos Vetores/virologia , Larva/fisiologia , Larva/virologia , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
13.
Parasit Vectors ; 8: 60, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623484

RESUMO

BACKGROUND: Near-infrared spectroscopy (NIRS) has been successfully used on fresh and RNAlater-preserved members of the Anopheles gambiae complex to identify sibling species and age. No preservation methods other than using RNAlater have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater is not the most practical preservative for field settings because it is expensive, requires basic laboratory conditions for storage and is not widely available in sub-Saharan Africa. The aim of this study was to test several cheaper and more field-friendly preservation methods for identifying sibling species of the An. gambiae complex using NIRS. METHODS: In this study we describe the use of NIRS to identify sibling species of preserved An. gambiae s. s. and An. arabiensis. Mosquitoes of each species were placed in sample tubes and preserved using one of the following preservation methods: (i) refrigeration at 4°C, (ii) freezing at -20°C, (iii) drying over a silica-gel desiccant, (iv) submersion in RNAlater at room temperature, (v) submersion in RNAlater at 4°C, and (vi) submersion in RNAlater at -20°C. Mosquitoes were preserved for 1, 4, 10, 32 or 50 weeks before they were scanned. RESULTS: Storage at 4°C was the only preservation method that, up to 32 weeks, did not result in significantly lower predicted values than those obtained from fresh insects. After 50 weeks, however, refrigerated samples did not give meaningful results. When storing for 50 weeks, desiccating samples over silica gel was the best preservation method, with a partial least squares regression cross-validation of >80%. Predictive data values were analyzed using a generalized linear model. CONCLUSION: NIRS can be used to identify species of desiccated Anopheles gambiae s.s. and Anopheles arabiensis for up to 50 weeks of storage with more than 80% accuracy.


Assuntos
Anopheles/classificação , Insetos Vetores/classificação , Preservação Biológica/veterinária , Espectroscopia de Luz Próxima ao Infravermelho/veterinária , Animais , Dessecação , Preservação Biológica/métodos , Sílica Gel , Espectroscopia de Luz Próxima ao Infravermelho/métodos
14.
J Med Entomol ; 51(6): 1268-75, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309317

RESUMO

Surveillance of malaria vectors in Africa is most often accomplished using CDC-type light traps or human landing catches (HLCs). Over the past 30 yr, a variety of commercial and experimental mosquito traps have been developed for residential mosquito control or for improved surveillance of disease vector species, including the BG Sentinel (BGS) trap. To optimize collection of Anopheles gambiae Giles using this trap, BGS traps were modified with an opening (vent) added to the trap base to decrease exhaust airflow. Four traps configurations were tested with colony-reared host-seeking female An. gambiae in free-flying laboratory enclosures. Six attractant treatments (three attractants: BG-Lure, Limburger cheese, and a blank, with and without CO2) were tested concurrently. Across all trap-attractant combinations, significantly more mosquitoes (P < 0.05) were collected in standard, unmodified traps set upright (mean: 10.0) or upside down (9.8) than vented traps, whether upright (5.9) or upside down (7.0). The BG-Lure + CO2 and Limburger Cheese + CO2 bait combinations were more attractive than the other attractants tested alone. All attractant combinations collected significantly more mosquitoes than unbaited traps. Field studies are needed to determine if BG-Lure + CO2- or Limburger cheese + CO2-baited BGS traps are comparable with HLCs in collecting host-seeking An. gambiae.


Assuntos
Anopheles , Controle de Mosquitos/instrumentação , Animais , Feminino
15.
J Am Mosq Control Assoc ; 30(3): 191-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25843094

RESUMO

Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) against Culex quinquefasciatus. Bacillus thuringiensis israelensis was applied at maximum label rate in a 232.26-m(2) field plot located in north-central Florida with containers placed at 2 heights (ground level and 1.52 m above ground) on stakes positioned 3.04, 6.09, 9.14, 12.19, and 15.24 m from the spray line. Results indicated that there was no significant (P > 0.05) difference in 24- and 48-h larval mortality between the 2 sprayers or between the 2 heights. There was significant difference (P < 0.05) among the 5 rows, with mortality continuously decreasing with increasing distance from sprayer. Both sprayers provided on average >70% larval mortality 3.04-9.14 m from the spray line, and <60% mortality at 12.19 and 15.24 m. The data suggest that the SR450 and Superhawk XP may be comparable sprayers for use with Bti to control mosquito larvae.


Assuntos
Bacillus thuringiensis/patogenicidade , Culex/microbiologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Culex/crescimento & desenvolvimento , Florida , Larva/crescimento & desenvolvimento , Larva/microbiologia , Controle de Mosquitos/instrumentação , Controle Biológico de Vetores/instrumentação
16.
Biomedica ; 32 Suppl 1: 13-21, 2012 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-23235809

RESUMO

INTRODUCTION: The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. OBJECTIVE: To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. MATERIALS AND METHODS: Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. RESULTS: In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. CONCLUSION: Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s.s.


Assuntos
Anopheles , Insetos Vetores , Malária/transmissão , Animais , Colômbia , Humanos
17.
Biomédica (Bogotá) ; 32(supl.1): 13-21, ene.-mar. 2012. graf, mapas, tab
Artigo em Espanhol | LILACS | ID: lil-639823

RESUMO

Introducción. El estudio de los aspectos de la biología de los mosquitos Anopheles spp.. fortalece la vigilancia entomológica. Objetivo. Determinar los aspectos de la biología y el comportamiento de las especies adultas del género Anopheles presentes en el área urbana de Puerto Carreño. Materiales y métodos. Se capturaron Anopheles spp.. silvestres que se habían posado en personas, en el intradomicilio y peridomicilio de viviendas ubicadas en el área urbana del municipio de Puerto Carreño (Vichada), entre las 18:00 y las 06:00 horas, durante dos noches consecutivas por mes y durante ocho meses. Se determinó la actividad de picadura para cada especie, la infección natural por Plasmodium falciparum y P. vivax VK247 y VK210 mediante la técnica ELISA, y se determinó la tasa de inoculación entomológica. Los individuos pertenecientes al complejo Albitarsis se determinaron mediante amplificación en cadena de la polimerasa del fragmento del gen white. Resultados. En orden de abundancia, se encontraron: An. darlingi (n=1.166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) y An. oswaldoi sensu lato (n=2). Anopheles darlingi registró dos picos de actividad de picadura entre las 21:00-22:00 y las 5:00-06:00 horas en el peridomicilio y, entre las 21:00-22:00 y las 04:00-05:00 horas, en el intradomicilio. Esta especie se encontró naturalmente infectada por P. vivax VK210 y registró una tasa de inoculación entomológica de dos para el año. Anopheles marajoara s.s. se encontró naturalmente infectado por P. falciparum y registró una tasa de inoculación entomológica de 5 para el año, con un máximo de actividad de picadura entre las 18:00 y las 19:00 horas, tanto en el intradomicilio como en el peridomicilio. Conclusión. Es posible que exista transmisión de malaria en el área urbana de Puerto Carreño (Vichada) y An. darlingi y An. marajoara s.s. serían las especies incriminadas.


Introduction. The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective. To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods. Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results. In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion. Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s.s.


Assuntos
Animais , Humanos , Anopheles , Insetos Vetores , Malária/transmissão , Colômbia
18.
Malar J ; 10: 186, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21740582

RESUMO

BACKGROUND: Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater(®)) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. METHODS: Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater(®) for several weeks. Age and species identification was determined using a cross-validation. RESULTS: The mean accuracy obtained for predicting the age of young (<7 days) or old (≥ 7 days) of all fresh (n = 633) and all preserved (n = 691) mosquito samples using the cross-validation technique was 83% and 90%, respectively. For species identification, accuracies were 82% for fresh against 80% for RNAlater(®) preserved. For both analyses, preserving mosquitoes in RNAlater(®) was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater(®) ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. CONCLUSION: RNAlater(®) can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended.


Assuntos
Anopheles/química , Vetores de Doenças , Entomologia/métodos , Preservação Biológica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Anopheles/classificação
19.
Parasit Vectors ; 3: 49, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20525305

RESUMO

Near-infrared spectroscopy (NIRS) was recently applied to age-grade and differentiate laboratory reared Anopheles gambiae sensu strico and Anopheles arabiensis sibling species of Anopheles gambiae sensu lato complex. In this study, we report further on the accuracy of this tool for simultaneously estimating the age class and differentiating the morphologically indistinguishable An. gambiae s.s. and An. arabiensis from semi-field releases and wild populations. Nine different ages (1, 3, 5, 7, 9, 11, 12, 14, 16 d) of An. arabiensis and eight different ages (1, 3, 5, 7, 9, 10, 11, 12 d) of An. gambiae s.s. maintained in 250 x 60 x 40 cm cages within a semi-field large-cage system and 105 wild-caught female An. gambiae s.l., were included in this study. NIRS classified female An. arabiensis and An. gambiae s.s. maintained in semi-field cages as <7 d old or >/=7 d old with 89% (n = 377) and 78% (n = 327) accuracy, respectively, and differentiated them with 89% (n = 704) accuracy. Wild caught An. gambiae s.l. were identified with 90% accuracy (n = 105) whereas their predicted ages were consistent with the expected mean chronological ages of the physiological age categories determined by dissections. These findings have importance for monitoring control programmes where reduction in the proportion of older mosquitoes that have the ability to transmit malaria is an important outcome.

20.
Am J Trop Med Hyg ; 81(4): 622-30, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19815877

RESUMO

Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with > or = 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.


Assuntos
Envelhecimento , Anopheles/classificação , Anopheles/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Feminino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA