RESUMO
Herein, we report a protocol for the anaerobic oxidation of alcohols, amines, aldehydes, and imines promoted by photoexcited nitroarenes. Mechanistic studies support the idea that photoexcited nitroarenes undergo double hydrogen atom transfer (HAT) steps with alcohols and amines to provide the respective ketone and imine products. In the presence of aldehydes and imines, successive HAT and oxygen atom transfer (OAT) events occur to yield carboxylic acids and amides, respectively. This transformation is amenable to a continuous-photoflow setup, which led to reduced reaction times.
RESUMO
A photoexcited-nitroarene-mediated anaerobic C-H hydroxylation of aliphatic systems is reported. The success of this reaction is due to the bifunctional nature of the photoexcited nitroarene, which serves as the C-H bond activator and the oxygen atom source. Compared to previous methods, this approach is cost- and atom-economical due to the commercial availability of the nitroarene, the sole mediator of the reaction. Because of the anaerobic conditions of the transformation, a noteworthy expansion in substrate scope can be obtained compared to prior reports. Mechanistic studies support that the photoexcited nitroarenes engage in successive hydrogen atom transfer and radical recombination events with hydrocarbons, leading to N-arylhydroxylamine ether intermediates. Spontaneous fragmentation of these intermediates leads to the key oxygen atom transfer products.
RESUMO
We report a photoinduced phenanthrene synthesis from aryl iodides and styrenes through an arylation/cyclization cascade. Compared to prior methods, this approach obviates the need for hazardous reagents and provides access to unsymmetrical phenanthrenes with good functional group tolerance. Mechanistic studies revealed that photoexcitation of aryl iodides leads to homolytic C-I bond cleavage. Arylation of styrenes with the formed aryl radical species furnishes stilbene derivatives, which undergo photoinduced cyclization promoted by iodine generated in situ to yield phenanthrene products.
Assuntos
Iodetos , Fenantrenos , Estrutura Molecular , Fenantrenos/química , Estirenos/químicaRESUMO
Herein we report the anaerobic cleavage of alkenes into carbonyl compounds using nitroarenes as oxygen transfer reagents under visible light. This approach serves as a safe and practical alternative to mainstream oxidative cleavage protocols, such as ozonolysis and the Lemieux-Johnson reaction. A wide range of alkenes possessing oxidatively sensitive functionalities underwent anaerobic cleavage to generate carbonyl derivatives with high efficiency and regioselectivity. Mechanistic studies support that the transformation occurs via direct photoexcitation of the nitroarene followed by a nonstereospecific radical cycloaddition event with alkenes. This leads to 1,3,2- and 1,4,2-dioxazolidine intermediates that fragment to give the carbonyl products. A combination of radical clock experiments and in situ photoNMR spectroscopy revealed the identities of the key radical species and the putative aryl dioxazolidine intermediates, respectively.
Assuntos
Alcenos , Oxigênio , Alcenos/química , Anaerobiose , Reação de Cicloadição , LuzRESUMO
We report cytotoxic ruthenium(ii) complexes of the general formula [RuCl(cis-tach)(diphosphine)]+ (cis-tach = cis-cis-1,3,5-triaminocyclohexane) that have been characterised by 1H, 13C and 31P{1H} NMR spectroscopy, mass spectrometry, X-ray crystallography and elemental analysis. The kinetics of aquation and stability of the active species have been studied, showing that the chlorido ligand is substituted by water at 298 K with first order rate constants of 10-2-10-3 s-1, ideal for potential clinical use as anti-tumour agents. Strong interactions with biologically relevant duplex and quadruplex DNA models correlate with the activity observed with A549, A2780 and 293T cell lines, and the degree of activity was found to be sensitive to the chelating diphosphine ligand. A label-free ptychographic cell imaging technique recorded cell death processes over 4 days. The Ru(ii) cis-tach diphosphine complexes exhibit anti-proliferative effects, in some cases outperforming cisplatin and other cytotoxic ruthenium complexes.