Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 258: 121777, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781620

RESUMO

The determination of water quality heavily depends on the selection of parameters recorded from water samples for the water quality index (WQI). Data-driven methods, including machine learning models and statistical approaches, are frequently used to refine the parameter set for four main reasons: reducing cost and uncertainty, addressing the eclipsing problem, and enhancing the performance of models predicting the WQI. Despite their widespread use, there is a noticeable gap in comprehensive reviews that systematically examine previous studies in this area. Such reviews are essential to assess the validity of these objectives and to demonstrate the effectiveness of data-driven methods in achieving these goals. This paper sets out with two primary aims: first, to provide a review of the existing literature on methods for selecting parameters. Second, it seeks to delineate and evaluate the four principal motivations for parameter selection identified in the literature. This manuscript categorizes existing studies into two methodological groups for refining parameters: one focuses on preserving information within the dataset, and another ensures consistent prediction using the full set of parameters. It characterizes each group and evaluates how effectively each approach meets the four predefined objectives. The study presents that the minimal WQI approach, common to both categories, is the only approach that has successfully reduced recording costs. Nonetheless, it notes that simply reducing the number of parameters does not guarantee cost savings. Furthermore, the group of studies classified as preserving information within the dataset has demonstrated potential to decrease the eclipsing problem, whereas studies in the consistent prediction group have not been able to mitigate this issue. Additionally, since data-driven approaches still rely on the initial parameters chosen by experts, they do not eliminate the need for expert judgment. The study further points out that the WQI formula is a straightforward and expedient tool for assessing water quality. Consequently, the paper argues that employing machine learning solely to reduce the number of parameters to enhance WQI prediction is not a standalone solution. Rather, this objective should be integrated with a more comprehensive set of research goals. The critical analysis of research objectives and the characterization of previous studies lay the groundwork for future research. This groundwork will enable subsequent studies to evaluate how their proposed methods can effectively achieve these objectives.


Assuntos
Qualidade da Água , Aprendizado de Máquina , Monitoramento Ambiental/métodos , Modelos Teóricos
2.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299902

RESUMO

Electroencephalography (EEG) is used to detect brain activity by recording electrical signals across various points on the scalp. Recent technological advancement has allowed brain signals to be monitored continuously through the long-term usage of EEG wearables. However, current EEG electrodes are not able to cater to different anatomical features, lifestyles, and personal preferences, suggesting the need for customisable electrodes. Despite previous efforts to create customisable EEG electrodes through 3D printing, additional processing after printing is often needed to achieve the required electrical properties. Although fabricating EEG electrodes entirely through 3D printing with a conductive material would eliminate the need for further processing, fully 3D-printed EEG electrodes have not been seen in previous studies. In this study, we investigate the feasibility of using a low-cost setup and a conductive filament, Multi3D Electrifi, to 3D print EEG electrodes. Our results show that the contact impedance between the printed electrodes and an artificial phantom scalp is under 550 Ω, with phase change of smaller than -30∘, for all design configurations for frequencies ranging from 20 Hz to 10 kHz. In addition, the difference in contact impedance between electrodes with different numbers of pins is under 200 Ω for all test frequencies. Through a preliminary functional test that monitored the alpha signals (7-13 Hz) of a participant in eye-open and eye-closed states, we show that alpha activity can be identified using the printed electrodes. This work demonstrates that fully 3D-printed electrodes have the capability of acquiring relatively high-quality EEG signals.


Assuntos
Eletroencefalografia , Couro Cabeludo , Humanos , Eletroencefalografia/métodos , Eletrodos , Encéfalo , Impressão Tridimensional
3.
IEEE J Biomed Health Inform ; 27(6): 2603-2613, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36301790

RESUMO

For the care of neonatal infants, abdominal auscultation is considered a safe, convenient, and inexpensive method to monitor bowel conditions. With the help of early automated detection of bowel dysfunction, neonatologists could create a diagnosis plan for early intervention. In this article, a novel technique is proposed for automated peristalsis sound detection from neonatal abdominal sound recordings and compared to various other machine learning approaches. It adopts an ensemble approach that utilises handcrafted as well as one and two dimensional deep features obtained from Mel Frequency Cepstral Coefficients (MFCCs). The results are then refined with the help of a hierarchical Hidden Semi-Markov Models (HSMM) strategy. We evaluate our method on abdominal sounds collected from 49 newborn infants admitted to our tertiary Neonatal Intensive Care Unit (NICU). The results of leave-one-patient-out cross validation show that our method provides an accuracy of 95.1% and an Area Under Curve (AUC) of 85.6%, outperforming both the baselines and the recent works significantly. These encouraging results show that our proposed Ensemble-based Deep Learning model is helpful for neonatologists to facilitate tele-health applications.


Assuntos
Auscultação , Aprendizado de Máquina , Recém-Nascido , Lactente , Humanos , Unidades de Terapia Intensiva Neonatal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA