Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 6(4): 873-9, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26941933

RESUMO

Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

2.
PeerJ ; 3: e845, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25802813

RESUMO

Effective monitoring, prevention and impact mitigation of nonindigenous aquatic species relies upon the ability to predict dispersal pathways and receiving habitats with the greatest risk of establishment. To examine mechanisms affecting species establishment within a large lake, we combined observations of recreational boater movements with empirical measurements of habitat suitability represented by nearshore wave energy to assess the relative risk of Eurasian watermilfoil (Myriophyllum spicatum) establishment. The model was evaluated using information from a 17 year (1995-2012) sequence of M. spicatum presence and absence monitoring. M. spicatum presence was not specifically correlated with recreational boater movements; however its establishment appears to be limited by wave action in Lake Tahoe. Of the sites in the "High" establishment risk category (n = 37), 54% had current or historical infestations, which included 8 of the 10 sites with the highest relative risk. Of the 11 sites in the "Medium" establishment risk category, 5 had current or historical M. spicatum populations. Most (76%) of the sites in the "Low" establishment risk category were observed in locations with higher wave action. Four sites that received zero boater visits from infested locations were occupied by M. spicatum. This suggests that the boater survey either represents incomplete coverage of boater movement, or other processes, such as the movement of propagules by surface currents or introductions from external sources are important to the establishment of this species. This study showed the combination of habitat specific and dispersal data in a relative risk framework can potentially reduce uncertainty in estimates of invasion risk.

3.
Conserv Biol ; 29(1): 187-97, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25132396

RESUMO

Identifying which nonindigenous species will become invasive and forecasting the damage they will cause is difficult and presents a significant problem for natural resource management. Often, the data or resources necessary for ecological risk assessment are incomplete or absent, leaving environmental decision makers ill equipped to effectively manage valuable natural resources. Structured expert judgment (SEJ) is a mathematical and performance-based method of eliciting, weighting, and aggregating expert judgments. In contrast to other methods of eliciting and aggregating expert judgments (where, for example, equal weights may be assigned to experts), SEJ weights each expert on the basis of his or her statistical accuracy and informativeness through performance measurement on a set of calibration variables. We used SEJ to forecast impacts of nonindigenous Asian carp (Hypophthalmichthys spp.) in Lake Erie, where it is believed not to be established. Experts quantified Asian carp biomass, production, and consumption and their impact on 4 fish species if Asian carp were to become established. According to experts, in Lake Erie Asian carp have the potential to achieve biomass levels that are similar to the sum of biomasses for several fishes that are harvested commercially or recreationally. However, the impact of Asian carp on the biomass of these fishes was estimated by experts to be small, relative to long term average biomasses, with little uncertainty. Impacts of Asian carp in tributaries and on recreational activities, water quality, or other species were not addressed. SEJ can be used to quantify key uncertainties of invasion biology and also provide a decision-support tool when the necessary information for natural resource management and policy is not available.


Assuntos
Carpas/fisiologia , Conservação dos Recursos Naturais/métodos , Espécies Introduzidas , Animais , Pesqueiros , Peixes/fisiologia , Previsões , Humanos , Lagos , Ontário , Dinâmica Populacional , Recreação , Medição de Risco , Estados Unidos
4.
Ecol Evol ; 4(12): 2584-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360288

RESUMO

Due to socioeconomic differences, the accuracy and extent of reporting on the occurrence of native species differs among countries, which can impact the performance of species distribution models. We assessed the importance of geographical biases in occurrence data on model performance using Hydrilla verticillata as a case study. We used Maxent to predict potential North American distribution of the aquatic invasive macrophyte based upon training data from its native range. We produced a model using all available native range occurrence data, then explored the change in model performance produced by omitting subsets of training data based on political boundaries. We also compared those results with models trained on data from which a random sample of occurrence data was omitted from across the native range. Although most models accurately predicted the occurrence of H. verticillata in North America (AUC > 0.7600), data omissions influenced model predictions. Omitting data based on political boundaries resulted in larger shifts in model accuracy than omitting randomly selected occurrence data. For well-documented species like H. verticillata, missing records from single countries or ecoregions may minimally influence model predictions, but for species with fewer documented occurrences or poorly understood ranges, geographic biases could misguide predictions. Regardless of focal species, we recommend that future species distribution modeling efforts begin with a reflection on potential spatial biases of available occurrence data. Improved biodiversity surveillance and reporting will provide benefit not only in invaded ranges but also within under-reported and unexplored native ranges.

5.
J Environ Manage ; 145: 330-40, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108183

RESUMO

The unwanted impacts of non-indigenous species have become one of the major ecological and economic threats to aquatic ecosystems worldwide. Assessing the potential dispersal and colonization of non-indigenous species is necessary to prevent or reduce deleterious effects that may lead to ecosystem degradation and a range of economic impacts. A three dimensional (3D) numerical model has been developed to evaluate the local dispersal of the planktonic larvae of an invasive bivalve, Asian clam (Corbicula fluminea), by passive hydraulic transport in Lake Tahoe, USA. The probability of dispersal of Asian clam larvae from the existing high density populations to novel habitats is determined by the magnitude and timing of strong wind events. The probability of colonization of new near-shore areas outside the existing beds is low, but sensitive to the larvae settling velocity ws. High larvae mortality was observed due to settling in unsuitable deep habitats. The impact of UV-radiation during the pelagic stages, on the Asian clam mortality was low. This work provides a quantification of the number of propagules that may be successfully transported as a result of natural processes and in function of population size. The knowledge and understanding of the relative contribution of different dispersal pathways, may directly inform decision-making and resource allocation associated with invasive species management.


Assuntos
Distribuição Animal , Corbicula/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental/métodos , Modelos Biológicos , Animais , Corbicula/fisiologia , Lagos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Densidade Demográfica , Estados Unidos , Vento
6.
Integr Environ Assess Manag ; 10(4): 522-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044130

RESUMO

Structured expert judgment (SEJ) is used to quantify the uncertainty of nonindigenous fish (bighead carp [Hypophthalmichthys nobilis] and silver carp [H. molitrix]) establishment in Lake Erie. The classical model for structured expert judgment model is applied. Forming a weighted combination (called a decision maker) of experts' distributions, with weights derived from performance on a set of calibration variables from the experts' field, exhibits greater statistical accuracy and greater informativeness than simple averaging with equal weights. New methods of cross validation are applied and suggest that performance characteristics relative to equal weighting could be predicted with a small number (1-2) of calibration variables. The performance-based decision maker is somewhat degraded on out-of-sample prediction, but remained superior to the equal weight decision maker in terms of statistical accuracy and informativeness.


Assuntos
Carpas , Espécies Introduzidas/estatística & dados numéricos , Lagos , Medição de Risco/métodos , Animais , Modelos Estatísticos , Incerteza
7.
Environ Sci Technol ; 48(4): 2150-6, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24467555

RESUMO

Recently, authors have theorized that invasive species prevention is more cost-effective than control in protecting ecosystem services. However, quantification of the effectiveness of prevention is rare because experiments at field scales are expensive or infeasible. We therefore used structured expert judgment to quantify the efficacy of 17 proposed strategies to prevent Asian carp invasion of the Laurentian Great Lakes via the hydrologic connection between the Mississippi and Great Lakes watersheds. Performance-weighted expert estimates indicated that hydrologic separation would prevent 99% (95,100; median, 5th and 95th percentiles) of Asian carp access, while electric and acoustic-bubble-strobe barriers would prevent 92% (85,95) and 92% (75,95), respectively. For all other strategies, estimated effectiveness was lower, with greater uncertainty. When potential invasions by other taxa are considered, the effectiveness of hydrologic separation increases relative to strategies that are effective primarily for fishes. These results could help guide invasive species management in many waterways globally.


Assuntos
Carpas/fisiologia , Hidrologia , Espécies Introduzidas , Julgamento , Lagos , Animais , Calibragem , Geografia , Mississippi , Rios
8.
Environ Manage ; 49(6): 1163-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22476670

RESUMO

Anoxia can restrict species establishment in aquatic systems and the artificial promotion of these conditions can provide an effective control strategy for invasive molluscs. Low abundances (2-20 m(-2)) of the nonnative bivalve, Asian clam (Corbicula fluminea), were first recorded in Lake Tahoe, CA-NV in 2002 and by 2010 nuisance-level population densities (>10,000 m(-2)) were observed. A non-chemical control method using gas impermeable benthic barriers to reduce dissolved oxygen (DO) concentrations available to C. fluminea was tested in this ultra-oligotrophic natural lake. In 2009, the impact of ethylene propylene diene monomer (EPDM) sheets (9 m(2), n = 6) on C. fluminea beds was tested on 1-7 day intervals over a 56 day period (August-September). At an average water temperature of 18 °C, DO concentrations under these small barriers were reduced to zero after 72 h resulting in 100 % C. fluminea mortality after 28 days. In 2010, a large EPDM barrier (1,950 m(2)) was applied to C. fluminea populations for 120 days (July-November). C. fluminea abundances were reduced over 98 % after barrier removal, and remained significantly reduced (>90 %) 1 year later. Non-target benthic macroinvertebrate abundances were also reduced, with variable taxon-specific recolonization rates. High C. fluminea abundance under anoxic conditions increased the release of ammonium and soluble reactive phosphorus from the sediment substrate; but levels of unionized ammonia were low at 0.004-0.005 mg L(-1). Prolonged exposure to anoxia using benthic barriers can provide an effective short term control strategy for C. fluminea.


Assuntos
Conservação dos Recursos Naturais/métodos , Corbicula/crescimento & desenvolvimento , Elastômeros/química , Lagos/química , Oxigênio/análise , Animais , Análise da Demanda Biológica de Oxigênio , Corbicula/metabolismo , Monitoramento Ambiental , Etilenos/química , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Permeabilidade , Densidade Demográfica , Estações do Ano , Propriedades de Superfície , Estados Unidos
9.
Am Nat ; 175(4): 461-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20163244

RESUMO

Demographic stochasticity can have large effects on the dynamics of small populations as well as on the persistence of rare genotypes and lineages. Survival is sensibly modeled as a binomial process, but annual reproductive success (ARS) is more complex and general models for demographic stochasticity do not exist. Here we introduce a stochastic model framework for ARS and illustrate some of its properties. We model a sequence of stochastic events: nest completion, the number of eggs or neonates produced, nest predation, and the survival of individual offspring to independence. We also allow multiple nesting attempts within a breeding season. Most of these components can be described by Bernoulli or binomial processes; the exception is the distribution of offspring number. Using clutch and litter size distributions from 53 vertebrate species, we demonstrate that among-individual variability in offspring number can usually be described by the generalized Poisson distribution. Our model framework allows the demographic variance to be calculated from underlying biological processes and can easily be linked to models of environmental stochasticity or selection because of its parametric structure. In addition, it reveals that the distributions of ARS are often multimodal and skewed, with implications for extinction risk and evolution in small populations.


Assuntos
Modelos Biológicos , Reprodução , Processos Estocásticos , Animais , Tamanho da Ninhada , Dinâmica Populacional , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA