Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Polymers (Basel) ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956706

RESUMO

Approximately 45% of global greenhouse gas emissions are caused by the construction and use of buildings. Thermal insulation of buildings in the current context of climate change is a well-known strategy to improve the energy efficiency of buildings. The development of renewable insulation material can overcome the drawbacks of widely used insulation systems based on polystyrene or mineral wool. This study analyzes the sustainability and thermal conductivity of new insulation materials made of Miscanthus x giganteus fibers, foaming agents, and alkali-activated fly ash binder. Life cycle assessments (LCA) are necessary to perform benchmarking of environmental impacts of new formulations of geopolymer-based insulation materials. The global warming potential (GWP) of the product is primarily determined by the main binder component sodium silicate. Sodium silicate's CO2 emissions depend on local production, transportation, and energy consumption. The results, which have been published during recent years, vary in a wide range from 0.3 kg to 3.3 kg CO2-eq. kg-1. The overall GWP of the insulation system based on Miscanthus fibers, with properties according to current thermal insulation regulations, reaches up to 95% savings of CO2 emissions compared to conventional systems. Carbon neutrality can be achieved through formulations containing raw materials with carbon dioxide emissions and renewable materials with negative GWP, thus balancing CO2 emissions.

2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203719

RESUMO

Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.


Assuntos
Células-Tronco/citologia , Dente/citologia , Animais , Biomarcadores/metabolismo , Regeneração Óssea , Humanos , Organoides/citologia , Osteogênese
3.
Talanta ; 232: 122431, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074417

RESUMO

The analysis of used engine oils from industrial engines enables the study of engine wear and oil degradation in order to evaluate the necessity of oil changes. As the matrix composition of an engine oil strongly depends on its intended application, meaningful diagnostic oil analyses bear considerable challenges. Owing to the broad spectrum of available oil matrices, we have evaluated the applicability of using an internal standard and/or preceding sample digestion for elemental analysis of used engine oils via inductively coupled plasma optical emission spectroscopy (ICP OES). Elements originating from both wear particles and additives as well as particle size influence could be clearly recognized by their distinct digestion behaviour. While a precise determination of most wear elements can be achieved in oily matrix, the measurement of additives is performed preferably after sample digestion. Considering a dataset of physicochemical parameters and elemental composition for several hundred used engine oils, we have further investigated the feasibility of predicting the identity and overall condition of an unknown combustion engine using the machine learning system XGBoost. A maximum accuracy of 89.6% in predicting the engine type was achieved, a mean error of less than 10% of the observed timeframe in predicting the oil running time and even less than 4% for the total engine running time, based purely on common oil check data. Furthermore, obstacles and possibilities to improve the performance of the machine learning models were analysed and the factors that enabled the prediction were explored with SHapley Additive exPlanation (SHAP). Our results demonstrate that both the identification of an unknown engine as well as a lifetime assessment can be performed for a first estimation of the actual sample without requiring meticulous documentation.

4.
Materials (Basel) ; 13(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709130

RESUMO

The development of sustainable, environmentally friendly insulation materials with a reduced carbon footprint is attracting increased interest. One alternative to conventional insulation materials are foamed geopolymers. Similar to foamed concrete, the mechanical properties of geopolymer foams can also be improved by using fibers for reinforcement. This paper presents an overview of the latest research findings in the field of fiber-reinforced geopolymer foam concrete with special focus on natural fibers reinforcement. Furthermore, some basic and background information of natural fibers and geopolymer foams are reported. In most of the research, foams are produced either through chemical foaming with hydrogen peroxide or aluminum powder, or through mechanical foaming which includes a foaming agent. However, previous reviews have not sufficiently addresses the fabrication of geopolymer foams by syntactic foams. Finally, recent efforts to reduce the fiber degradation in geopolymer concrete are discussed along with challenges for natural fiber reinforced-geopolymer foam concrete.

5.
Biomolecules ; 9(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817802

RESUMO

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Polissacarídeos/química , Animais , Materiais Biocompatíveis/química , Transplante Ósseo/métodos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
6.
Pharmaceutics ; 11(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871062

RESUMO

Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.

7.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332854

RESUMO

Antioxidant activity is an essential aspect of oxygen-sensitive merchandise and goods, such as food and corresponding packaging, cosmetics, and biomedicine. Technical lignin has not yet been applied as a natural antioxidant, mainly due to the complex heterogeneous structure and polydispersity of lignin. This report presents antioxidant capacity studies completed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The influence of purification on lignin structure and activity was investigated. The purification procedure showed that double-fold selective extraction is the most efficient (confirmed by ultraviolet-visible (UV/Vis), Fourier transform infrared (FTIR), heteronuclear single quantum coherence (HSQC) and 31P nuclear magnetic resonance spectroscopy, size exclusion chromatography, and X-ray diffraction), resulting in fractions of very narrow polydispersity (3.2⁻1.6), up to four distinct absorption bands in UV/Vis spectroscopy. Due to differential scanning calorimetry measurements, the glass transition temperature increased from 123 to 185 °C for the purest fraction. Antioxidant capacity is discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: antioxidant activity (DPPH inhibition) of kraft lignin fractions were 62⁻68%, whereas beech and spruce/pine-mixed lignin showed values of 42% and 64%, respectively. Total phenol content (TPC) of the isolated kraft lignin fractions varied between 26 and 35%, whereas beech and spruce/pine lignin were 33% and 34%, respectively. Storage decreased the TPC values but increased the DPPH inhibition.


Assuntos
Antioxidantes/farmacologia , Lignina/química , Lignina/farmacologia , Madeira/química , Antioxidantes/química , Biomassa , Varredura Diferencial de Calorimetria , Temperatura Alta , Espectroscopia de Ressonância Magnética , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
8.
RSC Adv ; 8(71): 40765-40777, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-35557904

RESUMO

Polyurethane (PU) coatings were successfully produced using unmodified kraft lignin (KL) as an environmentally benign component in contents of up to 80 wt%. Lignin samples were precipitated from industrial black liquor in aqueous solution working at room temperature and different pH levels (pH 2 to pH 5). Lignins were characterized by UV-Vis, FTIR, pyrolysis-GC/MS, SEC and 31P-NMR. Results show a correlation between pH level, OH number and molecular weight M w of isolated lignins. Lignin-based polyurethane coatings were prepared in an efficient one step synthesis dissolving lignin in THF and PEG425 in an ultrasonic bath followed by addition of 4,4-diphenylmethanediisocyanate (MDI) and triethylamine (TEA). Crosslinking was achieved under very mild conditions (1 hour at room temperature followed by 3 hours at 35 °C). The resulting coatings were characterized regarding their physical properties including ATR-IR, TGA, optical contact angle, light microscopy, REM-EDX and AFM data. Transparent homogeneous films of high flexibility resulted from lignins isolated at pH 4, possessing a temperature resistance up to 160 °C. Swelling tests revealed a resistance against water. Swelling in DMSO depends on index, pH of precipitation and catalyst utilization for PU preparation. According to AFM studies, surface roughness is between 10 and 28 nm.

9.
J Pharm Biomed Anal ; 149: 128-132, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29112901

RESUMO

Apart from the characterization of impurities, the full characterization of heparin and low molecular weight heparin (LMWH) also requires the determination of average molecular weight, which is closely related to the pharmaceutical properties of anticoagulant drugs. To determine average molecular weight of these animal-derived polymer products, partial least squares regression (PLS) was utilized for modelling of diffused-ordered spectroscopy NMR data (DOSY) of a representative set of heparin (n=32) and LMWH (n=30) samples. The same sets of samples were measured by gel permeation chromatography (GPC) to obtain reference data. The application of PLS to the data led to calibration models with root mean square error of prediction of 498Da and 179Da for heparin and LMWH, respectively. The average coefficients of variation (CVs) did not exceed 2.1% excluding sample preparation (by successive measuring one solution, n=5) and 2.5% including sample preparation (by preparing and analyzing separate samples, n=5). An advantage of the method is that the sample after standard 1D NMR characterization can be used for the molecular weight determination without further manipulation. The accuracy of multivariate models is better than the previous results for other matrices employing internal standards. Therefore, DOSY experiment is recommended to be employed for the calculation of molecular weight of heparin products as a complementary measurement to standard 1D NMR quality control. The method can be easily transferred to other matrices as well.


Assuntos
Anticoagulantes/química , Biopolímeros/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Controle de Qualidade , Animais , Anticoagulantes/análise , Anticoagulantes/normas , Calibragem , Bovinos , Química Farmacêutica/instrumentação , Química Farmacêutica/métodos , Difusão , Guias como Assunto , Heparina/análise , Heparina/química , Heparina/normas , Heparina de Baixo Peso Molecular/análise , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/normas , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética/instrumentação , Peso Molecular , Padrões de Referência , Ovinos , Suínos , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas
10.
Curr Stem Cell Res Ther ; 12(2): 103-123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26899395

RESUMO

Template-mediated mineralization describes a research field of materials chemistry that deals with templates influencing product formation of foremost inorganic functional materials and composites. These templates are usually organic compounds - as far as molecules with natural origin are involved, the terminology "biomineralization" or "biomimetic mineralization: is used. The present review gives insight into recent developments in the research area of bone-tissue engineering with focus on chemical templates and cell-based approaches. The review is structured as follows: (1) a brief general overview about the principle of templating and recently used template materials, (2) important analytical methods, (3) examples of template-guided mineralization of various bone-related materials, (4) natural bone mineralization, (5) scaffolds for bone-tissue regeneration and (6) cell-based therapeutic approaches. For this purpose, a literature screening with emphasis on promising potential practical applications was performed. In particular, macromolecular structures and polymer composites with relation to naturally occurring compounds were favored. Priority was given to publications of the last five years. Although the present review does not cover the whole topic to full extent, it should provide information about current trends and the most promising approaches in the research area of bone-tissue engineering based on applications of organic templates/scaffolds as well as cell-based strategies.


Assuntos
Materiais Biomiméticos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Alicerces Teciduais , Animais , Materiais Biomiméticos/química , Osso e Ossos/lesões , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Durapatita/farmacologia , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Camundongos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA