Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Diagn Pathol ; 70: 152294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513466

RESUMO

BACKGROUND: Triple Negative Breast Cancer (TNBC) presents diagnostic complexities, particularly in evaluating Tumor-Infiltrating Lymphocytes (TILs) and Programmed Death-Ligand 1 (PD-L1) expression. This study aimed to identify optimal TILs percentage cut-offs predictive of PD-L1 expression and to investigate the relationship between TILs, PD-L1, and tertiary lymphoid structures (TLSs). METHOD: Analyzing 141 TNBC cases, we assessed TILs, PD-L1 expression (clones 22C3 and SP142), and TLS presence. RESULTS: We identified TILs cut-offs (<20 %, 20-60 %, ≥60 %) correlating with PD-L1 expression. TILs <20 % rarely express PD-L1 with either 22C3 or SP142 clones. TILs ≥60 % demonstrate PD-L1 expression across both clones. TILs within the 20-60 % range correlate with PD-L1 expression using the SP142 clone, but not 22C3. Evaluating TILs solely at the tumor edge led to inaccuracies, highlighting the need for overall assessment of TILs throughout the entire lesion. TLS presence correlated with higher TIL percentages and PD-L1 expression, particularly with SP142. Discrepancies between 22C3 and SP142 clones (15 % vs. 50 % positivity, respectively) underscored the variability in PD-L1 detection. CONCLUSION: This study identifies TILs cut-offs predictive of PD-L1 positivity, suggesting the need for institutions to tailor these thresholds based on the selected PD-L1 clone and treatment. Evaluating TILs solely at the tumor edge may overlook the complexity of tumor immune infiltration. While TLS presence correlates with higher PD-L1 expression, particularly with the SP142 clone, its exact predictive value for PD-L1 remains to be clarified. The SP142 clone exhibits higher positivity rates compared to 22C3.


Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Linfócitos do Interstício Tumoral , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Antígeno B7-H1/metabolismo , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Adulto , Idoso , Imuno-Histoquímica/métodos , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/imunologia
2.
Toxins (Basel) ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34437392

RESUMO

Acute kidney injury (AKI) following Eastern Russell's viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3-10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.


Assuntos
Daboia , Metaloproteases/toxicidade , Fosfolipases A2/toxicidade , Proteínas de Répteis/toxicidade , Venenos de Víboras/toxicidade , Injúria Renal Aguda/patologia , Animais , Galinhas , Rim/patologia , Masculino , Metaloproteases/isolamento & purificação , Camundongos Endogâmicos ICR , Músculo Esquelético/fisiologia , Miocárdio/patologia , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Proteínas de Répteis/isolamento & purificação , Baço/patologia , Venenos de Víboras/química
3.
PLoS Negl Trop Dis ; 13(10): e0007338, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31644526

RESUMO

BACKGROUND: Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand. METHODOLOGY/PRINCIPLE FINDINGS: The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 µg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect. CONCLUSIONS/SIGNIFICANCE: This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.


Assuntos
Antivenenos/farmacologia , Antivenenos/uso terapêutico , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/prevenção & controle , Venenos de Víboras/toxicidade , Animais , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Nitrogênio da Ureia Sanguínea , China , Creatinina/sangue , Rim/patologia , Dose Letal Mediana , Masculino , Mianmar , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/patologia , Daboia , Mordeduras de Serpentes/terapia , Taiwan , Tailândia , Peçonhas , Venenos de Víboras/antagonistas & inibidores , Venenos de Víboras/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-29556251

RESUMO

BACKGROUND: Envenoming by kraits (genus Bungarus) is a medically significant issue in South Asia and Southeast Asia. Malayan krait (Bungarus candidus) venom is known to contain highly potent neurotoxins. In recent years, there have been reports on the non-neurotoxic activities of krait venom that include myotoxicity and nephrotoxicity. However, research on such non-neurotoxicity activities of Malayan krait venom is extremely limited. Thus, the aim of the present study was to determine the myotoxic, cytotoxic and nephrotoxic activities of B. candidus venoms from northeastern (BC-NE) and southern (BC-S) Thailand in experimentally envenomed rats. METHODS: Rats were administered Malayan krait (BC-NE or BC-S) venom (50 µg/kg, i.m.) or 0.9% NaCl solution (50 µL, i.m.) into the right hind limb. The animals were sacrificed 3, 6 and 24 h after venom administration. The right gastrocnemius muscle and both kidneys were collected for histopathological analysis. Blood samples were also taken for determination of creatine kinase (CK) and lactate dehydrogenase (LDH) levels. The human embryonic kidney cell line (HEK-293) was used in a cell proliferation assay to determine cytotoxic activity. RESULTS: Administration of BC-NE or BC-S venom (50 µg/kg, i.m.) caused time-dependent myotoxicity, characterized by an elevation of CK and LDH levels. Histopathological examination of skeletal muscle displayed marked muscle necrosis and myofiber disintegration 24 h following venom administration. Both Malayan krait venoms also induced extensive renal tubular injury with glomerular and interstitial congestion in rats. BC-NE and BC-S venoms (100-0.2 µg/mL) caused concentration-dependent cytotoxicity on the HEK-293 cell line. However, BC-NE venom (IC50 = 8 ± 1 µg/mL; at 24 h incubation; n = 4) was found to be significantly more cytotoxic than BC-S venom (IC50 = 15 ± 2 µg/mL; at 24 h incubation; n = 4). In addition, the PLA2 activity of BC-NE venom was significantly higher than that of BC-S venom. CONCLUSIONS: This study found that Malayan krait venoms from both populations possess myotoxic, cytotoxic and nephrotoxic activities. These findings may aid in clinical diagnosis and treatment of envenomed patients in the future.

5.
J. venom. anim. toxins incl. trop. dis ; 24: 1-9, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484743

RESUMO

Background: Envenoming by kraits (genus Bungarus) is a medically significant issue in South Asia and Southeast Asia. Malayan krait (Bungarus candidus) venom is known to contain highly potent neurotoxins. In recent years, there have been reports on the non-neurotoxic activities of krait venom that include myotoxicity and nephrotoxicity. However, research on such non-neurotoxicity activities of Malayan krait venom is extremely limited. Thus, the aim of the present study was to determine the myotoxic, cytotoxic and nephrotoxic activities of B. candidus venoms from northeastern (BC-NE) and southern (BC-S) Thailand in experimentally envenomed rats. Methods: Rats were administered Malayan krait (BC-NE or BC-S) venom (50 g/kg, i.m.) or 0.9% NaCl solution (50 L, i.m.) into the right hind limb. The animals were sacrificed 3, 6 and 24 h after venom administration. The right gastrocnemius muscle and both kidneys were collected for histopathological analysis. Blood samples were also taken for determination of creatine kinase (CK) and lactate dehydrogenase (LDH) levels. The human embryonic kidney cell line (HEK-293) was used in a cell proliferation assay to determine cytotoxic activity. Results: Administration of BC-NE or BC-S venom (50 g/kg, i.m.) caused time-dependent myotoxicity, characterized by an elevation of CK and LDH levels. Histopathological examination of skeletal muscle displayed marked muscle necrosis and myofiber disintegration 24 h following venom administration. Both Malayan krait venoms also induced extensive renal tubular injury with glomerular and interstitial congestion in rats. BC-NE and BC-S venoms (1000.2 g/ mL) caused concentration-dependent cytotoxicity on the HEK-293 cell line. However, BC-NE venom (IC50 =8 ± 1 g/mL; at 24 h incubation; n = 4) was found to be significantly more cytotoxic than BC-S venom (IC50 =15 ± 2 g/mL; at 24 h incubation; n = 4). In addition, the PLA2 activity of BC-NE venom was significantly higher than that of BC-S venom...


Assuntos
Animais , Bungarotoxinas/análise , Bungarus , Venenos Elapídicos/análise , Tailândia , Testes de Toxicidade
6.
J. venom. anim. toxins incl. trop. dis ; 24: 9, 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-894166

RESUMO

Envenoming by kraits (genus Bungarus) is a medically significant issue in South Asia and Southeast Asia. Malayan krait (Bungarus candidus) venom is known to contain highly potent neurotoxins. In recent years, there have been reports on the non-neurotoxic activities of krait venom that include myotoxicity and nephrotoxicity. However, research on such non-neurotoxicity activities of Malayan krait venom is extremely limited. Thus, the aim of the present study was to determine the myotoxic, cytotoxic and nephrotoxic activities of B. candidus venoms from northeastern (BC-NE) and southern (BC-S) Thailand in experimentally envenomed rats. Methods: Rats were administered Malayan krait (BC-NE or BC-S) venom (50 µg/kg, i.m.) or 0.9% NaCl solution (50 µL, i.m.) into the right hind limb. The animals were sacrificed 3, 6 and 24 h after venom administration. The right gastrocnemius muscle and both kidneys were collected for histopathological analysis. Blood samples were also taken for determination of creatine kinase (CK) and lactate dehydrogenase (LDH) levels. The human embryonic kidney cell line (HEK-293) was used in a cell proliferation assay to determine cytotoxic activity. Results: Administration of BC-NE or BC-S venom (50 µg/kg, i.m.) caused time-dependent myotoxicity, characterized by an elevation of CK and LDH levels. Histopathological examination of skeletal muscle displayed marked muscle necrosis and myofiber disintegration 24 h following venom administration. Both Malayan krait venoms also induced extensive renal tubular injury with glomerular and interstitial congestion in rats. BC-NE and BC-S venoms (100­0.2 µg/ mL) caused concentration-dependent cytotoxicity on the HEK-293 cell line. However, BC-NE venom (IC50 =8 ± 1 µg/mL; at 24 h incubation; n = 4) was found to be significantly more cytotoxic than BC-S venom (IC50 =15 ± 2 µg/mL; at 24 h incubation; n = 4). In addition, the PLA2 activity of BC-NE venom was significantly higher than that of BC-S venom. Conclusions: This study found that Malayan krait venoms from both populations possess myotoxic, cytotoxic and nephrotoxic activities. These findings may aid in clinical diagnosis and treatment of envenomed patients in the future.(AU)


Assuntos
Animais , Ratos , Bungarus/fisiologia , Citotoxinas/análise , Venenos Elapídicos/sangue , Venenos Elapídicos/toxicidade , Bungarotoxinas/sangue , Venenos Elapídicos/isolamento & purificação , Rim/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA