Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Soft Matter ; 20(2): 407-420, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108205

RESUMO

The use of polymers in the fabrication of bilayers for stimuli-responsive systems is well-known, yet viscoelasticity and viscoelastic models representing bilayer behavior have received surprisingly little attention. Of particular recent interest to us are simple polymeric bilayers in which one material, such as styrene-ethylene-propylene-styrene (SEPS) or styrene-isobutylene-styrene (SIBS), shows typical rubbery elastic response upon extension and retraction, and the other, an unvulcanized, low-Tg polymer such as butyl rubber (butyl), exhibits a viscoelastic response. When such a bilayer strip is extended to a fixed strain and held for several seconds followed by sudden release of this strain, rapid curling is observed, achieving a maximum curvature within 1 second, with a gradual uncurling, typically taking 300-600 seconds to eventually return to a flat strip. Attention has been directed to modeling the observed bilayer behavior. We compare predicted curvature and relaxation time constants from finite element analysis (FEA) simulations using Maxwell, Zener, Generalized Maxwell, and Parallel Rheological Framework (PRF) viscoelastic models to the experimentally measured values. We find that the Generalized Maxwell model predicts curvature over time with the lowest overall mean absolute scaled error (MASE) of 0.519, corresponding to a 4.9% difference from the second lowest error model and a 76.8% difference from the highest error model. Building upon an understanding of the material mechanics in simple bilayer strips, more complex bilayer systems can be designed. Samples of cross and weave geometries were fabricated from bilayer films and initial testing demonstrates how these materials can be used in potential applications.

2.
Micromachines (Basel) ; 13(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144061

RESUMO

We report a low-temperature inkjet printing and plasma treatment method using silver nitrate ink that allows the fabrication of conductive silver traces on poly(vinyl alcohol) (PVA) film with good fidelity and without degrading the polymer substrate. In doing so, we also identify a critical salt loading in the film that is necessary to prevent the polymer from reacting with the silver nitrate-based ink, which improves the resolution of the silver trace while simultaneously lowering its sheet resistance. Silver lines printed on PVA film using this method have sheet resistances of around 0.2 Ω/□ under wet/dry and stretched/unstretched conditions, while PVA films without prior treatment double in sheet resistance upon wetting or stretching the substrate. This low resistance of printed lines on salt-treated films can be preserved under multiple bending cycles of 0-90° and stretching cycles of 0-6% strain if the polymer is prestretched prior to inkjet printing.

3.
Polymers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146017

RESUMO

Continuous tapes of polypropylene (PP) and high-density polyethylene (HDPE) were produced using a novel multiplication co-extrusion process. The structure of the PP/HDPE tapes consists of co-continuous PP and HDPE domains aligned in the extrusion direction, forming a fiber-like composite structure with individual domain thicknesses of 200-500 nm. This unique structure created a significantly large contact interface between the polymer domains. AFM images suggest strong interfacial interactions between incompatible PP and HDPE domains. Orientation at 130 °C was possible due to the enhanced adhesion arising from epitaxial crystallization and the large interfacial area. The modulus, tensile strength, and orientation factor of the oriented composite tapes increased as the draw ratio increased. The existence of two independent shish kabab-like morphologies in the oriented tapes at different draw ratios was indicated by the appearance of two melting peaks for each material. After one-step orientation at 130 °C to a draw ratio of 25, the moduli of the oriented tapes increased to approximately 10 GPa, and the tensile strength increased to approximately 540 MPa. These oriented tapes are stiffer and stronger than commercial tapes and do not fibrillate during the orientation process indicating some interfacial interaction between the domains.

4.
Sci Rep ; 12(1): 10836, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760942

RESUMO

This study conducted a comprehensive characterization and analyses on the fire-resistant behaviors of novel fungal fibers grown with substrate containing Silica (Si) source at multiple scales. At micro-scale, the results of SEM showed that silica affected the physiological activities of fungi, with the extent of effects depending upon its concentration. Fourier-transform infrared (FTIR) spectra displayed the existence of Si-O-C chemical bonds in fungal fibers grown with Si source, indicating that Si source becomes a part of the structure of fungal fibers. Thermogravimetric analysis (TGA) and Microscale combustion calorimetry (MCC) of fungal fibers exhibit an early thermal decomposition of non-combustible components, which will potentially help release the thermal stress and mitigation of spalling when used in concrete. Compared with polypropylene (PP) fibers, fungal fibers have a lower thermal degradation rate, a higher residual weight, a lower heat release peak temperature, and less total heat of combustion; all of these indicate improved thermal stability and fire resistance, and a lower rate of function loss in case of a fire. Additionally, the thermal stability and fire resistance of fungal fibers were improved with the increase of Si source concentration in the nutrition medium. For example, addition of 2% Si source in the feeding substrate leads to a 23.21% increase in residual weight in TGA, and a 23.66 W/g decrease in peak heat release rate as well as a 2.44 kJ/g reduction in total heat of combustion in MCC. At laboratory scale, compared with PP fibers, fungal fibers grown with 2% Si source have a higher residual weight of 40.40%, a higher ignition temperature of 200.50 °C, and a declined flame height of 11.64 mm in real fire scenarios. Furthermore, only in the fungal fibers grown with Si source, partial burning occurred. In post-fire conditions, the microstructure of residual char from fungal fibers grown with higher content of Si source became denser, which would lead to a reduction of the fuel vapor release and heat transfer. FTIR spectra of residual char demonstrated that fungal fibers grown with Si source formed more stable chemical bonds with higher heat of chemical bond formation, contributing to improved thermal stability and fire resistance. Therefore, compared with traditional fibers used for fiber reinforced concrete, incorporating the new natural grown fibers will potentially further improve the fire resistance of concrete and mitigate the concrete spalling.


Assuntos
Incêndios , Calorimetria , Progressão da Doença , Febre , Fungos , Temperatura Alta , Dióxido de Silício
5.
Front Mol Neurosci ; 15: 830892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321030

RESUMO

Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems. Initial key literature, dating to roughly the late 1960's into the early 1990's, is reviewed here. We suggest that excitability in response to electrical stimulation is a material phenomenon that is exploited by living organisms, but that is not exclusive to living systems. Furthermore, given the ubiquity of biological hydrogels, we also speculate that excitability in protocells of primordial organisms might have shared some of the same molecular mechanisms seen in non-biological macromolecular systems, and that vestigial traces of such mechanisms may still play important roles in modern organisms' biological hydrogels. Finally, we also speculate that bio-mimicking excitability of synthetic macromolecular systems might have practical biomedical applications.

6.
Gels ; 7(2)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808087

RESUMO

Poly(acrylic acid) (PAA) bulk gels and threads, typically derived via free-radical polymerization, are of interest as anionic polyelectrolyte mimics of cellular cytosol and as models for early protocells. The thread dimensions have been limited by the diameters of readily-available glass or plastic capillaries, and threads with diameters of less than 50 µm have been difficult to achieve. Here, we report a useful approach for achieving crosslinked, partially neutralized PAA, namely poly(acrylate), gel threads with diameters of a few microns when dry. This technique utilizes coaxial electrospinning to effectively produce capillaries (shells) of polystyrene loaded with a gel-forming precursor mixture composed of 3 M acrylic acid, methylene-bisacrylamide, potassium persulfate and 2.2 M NaOH in the core, followed by thermally-induced polymerization and then the removal of the polystyrene shell. Relatively long (up to 5 mm), continuous PAA threads with thicknesses of 5-15 µm are readily obtained, along with a multitude of PAA gel particles, which result from the occasional break-up of the fluid core prior to gel formation during the electrospinning process. The threads and beads are of the sizes of interest to model ancient protocells, certain functional aspects of excitable cells, such as myocytes and neurons, and various membraneless organelles.

7.
J Biomed Mater Res B Appl Biomater ; 109(11): 1744-1753, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33847464

RESUMO

We employed aqueous solutions of highly-hydrolyzed (>99+%) poly(vinyl alcohol), PVA, to coat plastic dishes as a method to efficiently induce three-dimensional (3D) culturing of cells. The coatings were prepared by simple evaporation of 3 wt/vol% solutions of PVA in water and require no additional processing steps after air drying under sterile conditions. The coating allows spheroids to form in solution. Spheroid formation is usually preferable to two-dimensional (2D) culturing as it creates a more realistic ex vivo model of some human tissues and tumors. Using PVA-coated cell culture plates, we demonstrated that we can grow reproducibly sized spheroids using several human glioma cell lines, including LN229, U87 MG, and Gli36, and the embryonic kidney cell line, 293T. Spheroids formed on PVA-coated plates grow as well as on other commercially-available, low-attachment plates, and have excellent optical imaging properties. As spheroids, LN229 cells express markers of cancer stem cells. Finally, we confirmed that spheroids generated on PVA-coated plates are sensitive to molecular perturbations, as increased expression of the cell adhesion molecule PTPµ significantly increased the size of spheroids. The PVA hydrogel layer is an effective tool for creating a more realistic ex vivo culture system than traditional 2D culture and can be used to generate cell spheroids for potential application in drug screening and personalized medicine for diseases such as cancer.


Assuntos
Comunicação Celular , Técnicas de Cultura de Células , Álcool de Polivinil/química , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Humanos , Esferoides Celulares/citologia , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 12(16): 18997-19005, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227977

RESUMO

Intumescent coatings expand upon exposure to a flame to create a protective char layer between the flame and underlying substrate. Widely used commercially, these coatings are applied notably to steel load-bearing beams, significantly extending their time to failure. Boric acid has proved to be a particularly effective additive in the formulation in these coatings, although regulatory concerns are driving an urgent need for more environmentally friendly additives. We report here the characterization of poly(acrylic acid) (PAA) for its use as a novel material in flame-retardant and intumescent coatings. Thermogravimetric analysis (TGA) and microscale combustion calorimetry (MCC) were performed on the novel flame-retardant additives to evaluate individual degradation mechanisms and heat release rates. Promising compositions were immobilized in an epoxy binder and formulated with other intumescent additives such as ammonium polyphosphate (APP) and melamine (MEL) to evaluate performance in a coating system. These formulations were then evaluated via quantitative cone calorimetry. Particular PAA-containing formulations show peak heat release rates (PHRR) and total heat release (THR) of 283 kW/m2 and 50.5 MJ/m2, respectively, which compare favorably to data for BA-containing systems, specifically PHRR = 229 kW/m2 and THR = 43.1 MJ/m2. Results showed promise and need for further investigation into PAA as a multifunctional additive for use in flame-retardant and intumescent coatings.

10.
Micromachines (Basel) ; 10(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795271

RESUMO

: Bacterial and fungal pathogens have caused serious problems to the human health. This is particularly true for untreatable infectious diseases and clinical situations where there is no reliable treatment for infected patients. To increase the antimicrobial activity of materials, we introduce silver nanoparticle (NP) patches in which the NPs are incorporated to the surface of smooth and uniform poly(acrylic acid) (PAA) nanofibers. The PAA nanofibers were thermally crosslinked with ethylene glycol via heat treatment through a mild method. The characterization of the resulting PAA-silver NP patches was done using scanning electron microscopy (SEM), UV spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To demonstrate the antimicrobial activity of PAA, we incorporated the patches containing the silver NPs into strains of fungi such as Candida albicans (C. albican) and bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA). The PAA-silver fibers achieved zones of inhibition against C. albicans and MRSA indicating their antimicrobial activity against both fungi and bacteria. We conclude that silver NP patches exhibited multiple inhibitory actions for the interruption and blockage of activity fungal and bacterial strains, which has the potential as an antimicrobial agent in infectious diseases. Moreover, the proposed material has the potential to be used in antimicrobial textile fabrics, food packaging films, and wound dressings.

11.
Soft Matter ; 15(38): 7596-7604, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31475721

RESUMO

Poly(acrylic acid) (PAA) gels synthesized via free-radical polymerization of acrylic acid, N,N'-methylenebisacrylamide and high molarities of salts in water exhibit properties markedly different from PAA gels synthesized without salt, even when the latter are incubated in high-molarity salt solutions after gelation. Particularly noteworthy is unusual mechanical behaviour that includes substantially increased elongation, increased modulus, and rapid recovery after strain. The greatest enhancement in viscoelastic behaviour is evident in 2 M LiCl and ZnCl2 samples, with LiCl samples having a modulus of 39 kPa and reaching an extension ratio of 10 and a fracture stress of 135 kPa, and ZnCl2 samples having a modulus of 43 kPa and reaching an extension ratio of 8.5 and a fracture stress of 175 kPa. This enhanced elasticity is thought to be brought about by a combination of coiled but only weakly-entangled PAA chains with phase-separated regions of salt acting as a plasticizer and modulating intermolecular interactions among AA units.

12.
AAPS PharmSciTech ; 18(6): 1917-1924, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27858252

RESUMO

We report the successful implementation of a novel melt co-extrusion process to fabricate ca. 1 µm diameter fibers of poly(caprolactone) (PCL) containing the antifungal compound clotrimazole in concentrations between 4 and 8 wt%. The process involves co-extrusion of a clotrimazole-loaded PCL along with poly(ethylene oxide) (PEO) as a co-feed, with subsequent removal of PEO to isolate PCL-clotrimazole fibers. In vitro tests of the clotrimazole-containing fibers against the fungus Aspergillus fumigatus, Candida albicans, and Trichophyton mentagrophytes strains demonstrated good antifungal activity which was maintained for more than 3 weeks. An in vivo study using a mouse model showed the lowest tissue fungal burden for PCL-clotrimazole when compared to a PCL-only patch and untreated controls. Comparative studies were conducted with clotrimazole-containing PCL fibers fabricated by electrospinning. Our data showed that the co-extruded, clotrimazole-containing fibers maintain activity for longer times vs. electrospun samples. This, coupled with the much higher throughput of the co-extrusion process vs. electrospinning, renders this new approach very attractive for the fabrication of drug-releasing polymer fibers.


Assuntos
Antifúngicos/química , Química Farmacêutica/métodos , Nanofibras/química , Polímeros/química , Animais , Antifúngicos/farmacocinética , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Caproatos/química , Caproatos/farmacocinética , Clotrimazol/química , Clotrimazol/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Lactonas/química , Lactonas/farmacocinética , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polímeros/farmacocinética , Trichophyton/efeitos dos fármacos , Trichophyton/metabolismo
13.
Invest Ophthalmol Vis Sci ; 57(14): 6134-6146, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832279

RESUMO

PURPOSE: We fabricated and investigated polymeric scaffolds that can substitute for the conjunctival extracellular matrix to provide a substrate for autologous expansion of human conjunctival goblet cells in culture. METHODS: We fabricated two hydrogels and two silk films: (1) recombinant human collagen (RHC) hydrogel, (2) recombinant human collagen 2-methacryloylxyethyl phosphorylcholine (RHC-MPC) hydrogel, (3) arginine-glycine-aspartic acid (RGD) modified silk, and (4) poly-D-lysine (PDL) coated silk, and four electrospun scaffolds: (1) collagen, (2) poly(acrylic acid) (PAA), (3) poly(caprolactone) (PCL), and (4) poly(vinyl alcohol) (PVA). Coverslips and polyethylene terephthalate (PET) were used for comparison. Human conjunctival explants were cultured on scaffolds for 9 to 15 days. Cell viability, outgrowth area, and the percentage of cells expressing markers for stratified squamous epithelial cells (cytokeratin 4) and goblet cells (cytokeratin 7) were determined. RESULTS: Most of cells grown on all scaffolds were viable except for PCL in which only 3.6 ± 2.2% of the cells were viable. No cells attached to PVA scaffold. The outgrowth was greatest on PDL-silk and PET. Outgrowth was smallest on PCL. All cells were CK7-positive on RHC-MPC while 84.7 ± 6.9% of cells expressed CK7 on PDL-silk. For PCL, 87.10 ± 3.17% of cells were CK7-positive compared to PET where 67.10 ± 12.08% of cells were CK7-positive cells. CONCLUSIONS: Biopolymer substrates in the form of hydrogels and silk films provided for better adherence, proliferation, and differentiation than the electrospun scaffolds and could be used for conjunctival goblet cell expansion for eventual transplantation once undifferentiated and stratified squamous cells are included. Useful polymer scaffold design characteristics have emerged from this study.


Assuntos
Túnica Conjuntiva/citologia , Matriz Extracelular/química , Células Caliciformes/citologia , Nanofibras , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adolescente , Adulto , Idoso , Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
J Biomater Sci Polym Ed ; 25(12): 1292-305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945329

RESUMO

Electrospun DOXY-h loaded-poly(acrylic acid) (PAA) nanofiber mats (PAA/DOXY-h nanofiber mats) were prepared by the electrospinning technique and post-spinning sorption method at various doses: PAA/DOXY-h125, PAA/DOXY-h250, PAA/DOXY-h500, and PAA/DOXY-h1000. The morphology, drug content, release characteristics, and antibacterial activities of the PAA/DOXY-h nanofiber mats were investigated with scanning electron microscopy, UV-vis spectrophotometry, and disc diffusion methodology. The PAA/DOXY-h nanofiber mats had a diameter range of 285-340 nm, and a smooth surface without beads. Adsorption isotherms of DOXY-h could be described well with the Freundlich model. The amounts of DOXY-h, after the post-spinning sorption process, in the PAA/DOXY-h nanofiber mats ranged between 27.57 and 101.71 mg/g. All of the PAA/DOXY-h nanofiber mats exhibited an initial burst release characteristic with cumulative releasing percentages between 37.14 and 45.97%, which followed the Fickian diffusion mechanism. Based on the antibacterial investigation, the tested gram-positive bacteria, Staphylococcus aureus and Streptococcus agalactiae, seemed to be more sensitive to PAA/DOXY-h nanofiber mats than the tested gram-negative bacteria, Pseudomonas aeruginosa. These PAA/DOXY-h nanofiber mats could be used as an antibacterial wound dressing.


Assuntos
Resinas Acrílicas/química , Antibacterianos/farmacologia , Doxiciclina/química , Doxiciclina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanofibras/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Cinética , Nanotecnologia , Temperatura
16.
ACS Macro Lett ; 1(1): 80-83, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578458

RESUMO

Stimuli-responsive materials are desired for a wide range of applications. Here, we report the design and fabrication of all-organic, stimuli-responsive polymer composites using electrospun nanofibers as the filler. The incorporation of 4 wt % of filler into the polymer matrix increased the tensile storage modulus by 2 orders of magnitude. Upon exposure to water, the filler fibers plasticize and no longer provide mechanical reinforcement. The tensile storage modulus subsequently diminishes 2 orders of magnitude to the value of the neat matrix polymer.

17.
Drug Deliv Transl Res ; 2(5): 313-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25787173

RESUMO

In recent years, electrospinning has increased in popularity as a processing technique for obtaining nanometer-to-micron diameter polymer fibers collected to form a nonwoven scaffold. It possesses the ability to process collagen into nanofibrous scaffolds which have been used for a number of applications, such as artificial vascular grafts and for wound repair. This paper offers a review of some of the basic yet essential aspects of producing nanofibrous scaffolds of collagen by electrospinning. A primer to collagen structure, cross-linking techniques, and electrospinning principles is provided, along with some of the many applications of these unique materials.

18.
J Biomater Sci Polym Ed ; 23(11): 1451-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21781383

RESUMO

Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.


Assuntos
Caproatos , Lactonas , Retina/fisiologia , Células-Tronco/fisiologia , Alicerces Teciduais , Animais , Caproatos/química , Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Lactonas/química , Teste de Materiais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Porosidade , Retina/cirurgia , Retina/transplante , Rodopsina/genética , Rodopsina/metabolismo , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Tecidos , Alicerces Teciduais/química
19.
Biosens Bioelectron ; 26(5): 2275-80, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20970984

RESUMO

Biocompatible hydrogels that serve as the hosting membrane for various bioreceptors contribute to the response of impedimetric biosensors. The temperature response of poly(2-hydroxymethacrylate) [p(HEMA)]-based hydrogel networks prepared with poly(ethylene glycol) methacrylate (PEGMA) for enhanced biocompatibility and with N-[tris(hydroxymethyl)methyl] acrylamide (HMMA) was studied. Hydrogels were cross-linked with tetraethyleneglycol diacrylate (TEGDA) and synthesized by UV initiation (2M% DMPA photoinitiator). The p(HEMA-co-PEGMA-co-HMMA) based hydrogels were fabricated as discrete gel pads (D=2.5 mm, H=2 mm and V=9.82 µL) on top of 250 µm diameter cysteamine modified and acryloyl (polyethylene glycol)(110) N-hydroxy succinamide ester (acryloyl-PEG-NHS) derivatized gold microelectrodes set within 8-well (8W1E) cell culture biochips. Gel pads were fabricated with cross-link densities corresponding to 1, 3, 5, 7, 9 and 12 M% TEGDA and were studied by frequency dependent 3-electrode electrochemical impedance spectroscopy (1 mHz to 100 kHz; 50 mV p-t-p) and by temporal 2-electrode impedimetry (64 kHz; 50 mV p-t-p) over the temperature range 30-45°C at 90% RH or in aqueous 0.1 M Tris/KCl at pH 7.2 buffer. The p(HEMA-co-PEGMA-co-HMMA) hydrogels showed an increase in the real component of impedance with increasing cross-link density and demonstrated activation energies for impedimetric transport that ranged from 15 kJ/mol (3 M%) to 20 kJ/mol (12 M%) confirming the dominance of proton migration in the impedance of the hydrogels.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Receptores de Superfície Celular/química , Condutividade Elétrica , Temperatura
20.
Angle Orthod ; 80(6): 1129-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20677965

RESUMO

OBJECTIVE: To develop a novel delivery system by which fluoride incorporated into elastomeric rings, such as those used to ligate orthodontic wires, will be released in a controlled and constant manner. MATERIALS AND METHODS: Polyethylene co-vinyl acetate (PEVA) was used as the model elastomer. Samples (N = 3) were prepared by incorporating 0.02 to 0.4 g of sodium fluoride (NaF) into previously prepared PEVA solution. Another group of samples prepared in the same manner were additionally dip-coated in PEVA to create an overcoat. Fluoride release studies were conducted in vitro using an ion selective electrode over a period of 45 days. The amount of fluoride released was compared to the optimal therapeutic dose of 0.7 microg F(-)/ring/d. RESULTS: Only coated samples with the highest fluoride content (group D, 0.4 g of NaF) were able to release fluoride at therapeutic levels. When fluoride release from coated and uncoated samples with the same amount of NaF were compared, it was shown that the dip-coating technique resulted in a fluoride release in a controlled manner while eliminating the initial burst effect. CONCLUSIONS: This novel fluoride delivery matrix provided fluoride release at a therapeutically effective rate and profile.


Assuntos
Cariostáticos/administração & dosagem , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos , Elastômeros/química , Aparelhos Ortodônticos , Fluoreto de Sódio/administração & dosagem , Cárie Dentária/prevenção & controle , Fluoretos/análise , Desenho de Aparelho Ortodôntico , Polietilenos , Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA