Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891970

RESUMO

Despite the success of genome-wide association studies (GWASs) in identifying genetic variants associated with complex traits, understanding the mechanisms behind these statistical associations remains challenging. Several methods that integrate methylation, gene expression, and protein quantitative trait loci (QTLs) with GWAS data to determine their causal role in the path from genotype to phenotype have been proposed. Here, we developed and applied a multi-omics Mendelian randomization (MR) framework to study how metabolites mediate the effect of gene expression on complex traits. We identified 216 transcript-metabolite-trait causal triplets involving 26 medically relevant phenotypes. Among these associations, 58% were missed by classical transcriptome-wide MR, which only uses gene expression and GWAS data. This allowed the identification of biologically relevant pathways, such as between ANKH and calcium levels mediated by citrate levels and SLC6A12 and serum creatinine through modulation of the levels of the renal osmolyte betaine. We show that the signals missed by transcriptome-wide MR are found, thanks to the increase in power conferred by integrating multiple omics layer. Simulation analyses show that with larger molecular QTL studies and in case of mediated effects, our multi-omics MR framework outperforms classical MR approaches designed to detect causal relationships between single molecular traits and complex phenotypes.


Assuntos
Estudo de Associação Genômica Ampla , Metaboloma , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos
2.
Plant Cell ; 34(3): 989-1001, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792584

RESUMO

The triploid block, which prevents interploidy hybridizations in flowering plants, is characterized by a failure in endosperm development, arrest in embryogenesis, and seed collapse. Many genetic components of triploid seed lethality have been successfully identified in the model plant Arabidopsis thaliana, most notably the paternally expressed genes (PEGs), which are upregulated in tetraploid endosperm with paternal excess. Previous studies have shown that the paternal epigenome is a key determinant of the triploid block response, as the loss of DNA methylation in diploid pollen suppresses the triploid block almost completely. Here, we demonstrate that triploid seed collapse is bypassed in Arabidopsis plants treated with the DNA methyltransferase inhibitor 5-Azacytidine during seed germination and early growth. We identified strong suppressor lines showing stable transgenerational inheritance of hypomethylation in the CG context, as well as normalized expression of PEGs in triploid seeds. Importantly, differentially methylated loci segregate in the progeny of "epimutagenized" plants, which may allow epialleles involved in the triploid block response to be identified in future studies. Finally, we demonstrate that chemically induced epimutagenesis facilitates hybridization between different Capsella species, thus potentially emerging as a strategy for producing triploids and interspecific hybrids with high agronomic interest.


Assuntos
Arabidopsis , Triploidia , Arabidopsis/genética , Diploide , Endosperma/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA