RESUMO
Because extracellular vesicle (EV)-associated cytokines, both encapsulated and surface bound, have been associated with symptom severity, and may vary over the lifespan, they may be potential biomarkers to uncover underlying mechanisms of various conditions. This study evaluated the associations of soluble and EV-associated cytokine concentrations with distinct symptom profiles reported by 290 women with breast cancer prior to surgery. Patients were classified into older (≥60 years, n = 93) and younger (< 60 years, n = 197) cohorts within two previously identified distinct symptom severity profiles, that included pain, depressive symptoms, sleep disturbance, and fatigue (i.e., High Fatigue Low Pain and All Low). EVs were extracted using ExoQuick. Cytokine concentrations were determined using Luminex multiplex assay. Mann Whitney U test evaluated the differences in EV and soluble cytokine levels between symptom classes and between and within the older and younger cohorts adjusting for Karnofsky Performance Status (KPS) score, body mass index (BMI), and stage of disease. Partial correlation analyses were run between symptom severity scores and cytokine concentrations. Results of this study suggest that levels of cytokine concentrations differ between EV and soluble fractions. Several EV and soluble pro-inflammatory cytokines had positive associations with depressive symptoms and fatigue within both age cohorts and symptom profiles. In addition, in the older cohort with High Fatigue Low Pain symptom profile, EV GM-CSF concentrations were higher compared to the All Low symptom profile (p < 0.05). Albeit limited by a small sample size, these exploratory analyses provide new information on the association between cytokines and symptom profiles of older and younger cohorts. Of note, unique EV-associated cytokines were found in older patients and in specific symptom classes. These results suggest that EVs may be potential biomarker discovery tools. Understanding the mechanisms that underlie distinct symptom class profiles categorized by age may inform intervention trials and offer precision medicine approaches.
RESUMO
Fatigue is a persistent and debilitating symptom following cancer treatments such as chemotherapy. Recent clinical studies have suggested a common single-nucleotide polymorphism of brain-derived neurotrophic factor (BDNF), Val66Met (rs6265), may be related to the severity of fatigue following cancer treatment. In this study, we tested transgenic mice homozygous for the human Val66Met BDNF gene and wild-type controls. We injected three doses of 5-fluorouracil (5FU) as a model of chemotherapy treatment, and we used changes in voluntary wheel running activity (VWRA) as a measure of fatigue-like behavior. Prior to 5FU injection, we found that during the baseline wheel-running period, the Val66Met mice lost more weight than WT controls. We next administered 5FU and saw a robust fatigue-like phenotype that lasted about 2 weeks. During the first week, the fatigue-like phenotype was less severe in the Val66Met mice and unrelated to the age of the mice. In contrast, during the second week after 5FU treatment, the fatigue-like phenotype was unrelated to the BDNF genotype but was more severe in middle aged mice compared to young mice. We conclude that the BDNF polymorphism may play a direct, protective role against chemotherapy-induced fatigue.
RESUMO
Fatigue is a persistent and debilitating symptom following radiation therapy for prostate cancer. However, it is not well-understood how radiation targeted to a small region of the body can lead to broad changes in behavior. In this study, we used targeted pelvic irradiation of healthy male mice to test whether inflammatory signaling mediates changes in voluntary physical activity levels. First, we tested the relationship between radiation dose, blood cell counts, and fatigue-like behavior measured as voluntary wheel-running activity. Next, we used oral minocycline treatments to reduce inflammation and found that minocycline reduces, but does not eliminate, the fatigue-like behavioral changes induced by radiation. We also used a strain of mice lacking the MyD88 adaptor protein and found that these mice also showed less fatigue-like behavior than the wild-type controls. Finally, using serum and brain tissue samples, we determined changes in inflammatory signaling induced by irradiation in wild-type, minocycline treated, and MyD88 knockout mice. We found that irradiation increased serum levels of IL-6, a change that was partially reversed in mice treated with minocycline or lacking MyD88. Overall, our results suggest that inflammation plays a causal role in radiation-induced fatigue and that IL-6 may be an important mediator.
RESUMO
Fatigue and cognitive deficits are often co-occurring symptoms reported by patients after radiation therapy for prostate cancer. In this study, we induced fatigue-like behavior in mice using targeted pelvic irradiation to mimic the clinical treatment regimen and assess cognitive behavioral changes. We observed that pelvic irradiation produced a robust fatigue phenotype, a reduced rate of spontaneous alternation in a Y-maze test, and no behavioral change in an open field test. We found that reversal learning for fatigued mice was slower with respect to time, but not with respect to effort put into the test, suggesting that fatigue may impact the ability or motivation to work at a cognitive task without impairing cognitive capabilities. In addition, we found that mice undergoing pelvic irradiation show lower whole-brain levels of mature BDNF, and that whole-brain proBDNF levels also correlate with spontaneous alternation in a Y-maze test. These results suggest that changes in BDNF levels could be both a cause and an effect of fatigue-related changes in behavior.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos da radiação , Raios gama , Pelve/efeitos da radiação , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Fadiga/patologia , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Reversão de Aprendizagem/efeitos da radiaçãoRESUMO
Following the publication of the article, the authors realized that they have overlooked acknowledging the assistance they received from the Murine Phenotyping Core at NHLBI. Therefore, the Acknowledgements section of the Declarations should also have stated the following: 'We would like to thank the Murine Phenotyping Core at NHLBI for all their help with the mouse experiments, including Dr Danielle Springer, Audrey Noguchi, Michele Allen, Heather Potts and Morteza Peiravi.' The authors regret their oversight in failing to include this information in the Acknowledgements section of their paper. [the original article was published in International Journal of Molecular Medicine 45: 485496, 2020; DOI: 10.3892/ijmm.2019.4435].
RESUMO
Combined androgen deprivation therapy (ADT) and radiation therapy (RT) is the standard of care treatment for nonmetastatic prostate cancer (NMPC). Despite the efficacy, treatmentrelated symptoms including fatigue greatly reduce the quality of life of cancer patients. The goal of the study is to examine the influence of combined ADT/RT on fatigue and understand its underlying mechanisms. A total of 64 participants with NMPC were enrolled. Fatigue was assessed using the Functional Assessment of Cancer TherapyFatigue. Mitochondrial function parameters were measured as oxygen consumption from peripheral blood mononuclear cells (PBMCs) extracted from participants' whole blood. An ADT/RTinduced fatigue mouse model was developed, with fatigue measured as a reduction in voluntary wheelrunning activity (VWRA) in 54 mice. Mitochondrial function was assessed in the ADT/RT mouse brains using western blot analysis of glucose transporter 4 (GLUT4) and transcription factor A, mitochondrial (TFAM). The results demonstrated that fatigue in the ADT group was exacerbated during RT compared with the nonADT group. This effect was specific to fatigue, as depressive symptoms were unaffected. PBMCs of fatigued subjects exhibited decreased ATP coupling efficiency compared to nonfatigued subjects, indicative of mitochondrial dysfunction. The ADT/RT mice demonstrated the synergistic effect of ADT and RT in decreasing VWRA. Brain tissues of ADT/RT mice exhibited decreased levels of GLUT4 and TFAM suggesting that impaired neuronal metabolic homeostasis may contribute to fatigue pathogenesis. In conclusion, these findings suggest that fatigue induced by ADT/RT may be attributable to mitochondrial dysfunction both peripherally and in the central nervous system (CNS). The synergistic effect of ADT/RT is behaviorally reproducible in a mouse model and its mechanism may be related to bioenergetics in the CNS.
Assuntos
Antagonistas de Androgênios/uso terapêutico , Fadiga/etiologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Idoso , Antagonistas de Androgênios/efeitos adversos , Animais , Terapia Combinada/efeitos adversos , Fadiga/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Neoplasias da Próstata/complicações , Neoplasias da Próstata/patologia , Qualidade de VidaRESUMO
Fatigue is a very common and costly symptom associated with various diseases and disorders. Nonetheless, understanding the pathobiology and developing of therapies for fatigue have been difficult, partly because of a lack of consensus on the measures to phenotype this behavior, both in clinical settings and in animal studies. Here, we describe a fatigue-like behavior induced in mice by abdominal irradiation and compare three different methods of measuring changes in physical activity over time: running wheels, video home cage monitoring, and telemetry. These methods collect data passively and continuously, requiring no disruption of animals' normal home cage behavior. In our experiments, all three methods reported a fatigue-like behavior, exhibited by a reduction in physical activity following abdominal irradiation. Video tracking showed the largest fatigue effect size (Cohen's D = 1.78) over four days of monitoring, and was the only method showing a significant decrease in activity during the light period. Telemetry and running wheels showed a similar effect size (D = 1.68 and 1.65, respectively), but running wheels showed different circadian patterns of physical activity. In addition, we conducted rotarod and inverted grid suspension tests, which suggested that fatigue-like behavior was not the result of gross motor abnormalities.
Assuntos
Comportamento Animal/fisiologia , Fadiga/fisiopatologia , Atividade Motora/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Condicionamento Físico Animal , TelemetriaRESUMO
Cancer-related fatigue (CRF) is a common burden in cancer patients and little is known about its underlying mechanism. The primary aim of this study was to identify gene signatures predictive of post-radiotherapy fatigue in prostate cancer patients. We employed Fisher Linear Discriminant Analysis (LDA) to identify predictive genes using whole genome microarray data from 36 men with prostate cancer. Ingenuity Pathway Analysis was used to determine functional networks of the predictive genes. Functional validation was performed using a T lymphocyte cell line, Jurkat E6.1. Cells were pretreated with metabotropic glutamate receptor 5 (mGluR5) agonist (DHPG), antagonist (MPEP), or control (PBS) for 20 min before irradiation at 8 Gy in a Mark-1 γ-irradiator. NF-κB activation was assessed using a NF-κB/Jurkat/GFP Transcriptional Reporter Cell Line. LDA achieved 83.3% accuracy in predicting post-radiotherapy fatigue. "Glutamate receptor signaling" was the most significant (p = 0.0002) pathway among the predictive genes. Functional validation using Jurkat cells revealed clustering of mGluR5 receptors as well as increased regulated on activation, normal T cell expressed and secreted (RANTES) production post irradiation in cells pretreated with DHPG, whereas inhibition of mGluR5 activity with MPEP decreased RANTES concentration after irradiation. DHPG pretreatment amplified irradiation-induced NF-κB activation suggesting a role of mGluR5 in modulating T cell activation after irradiation. These results suggest that mGluR5 signaling in T cells may play a key role in the development of chronic inflammation resulting in fatigue and contribute to individual differences in immune responses to radiation. Moreover, modulating mGluR5 provides a novel therapeutic option to treat CRF.
Assuntos
Fadiga/etiologia , NF-kappa B/metabolismo , Neoplasias da Próstata/radioterapia , Radioterapia/efeitos adversos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Idoso , Estudo de Associação Genômica Ampla , Humanos , Células Jurkat , Aprendizado de Máquina , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Pessoa de Meia-Idade , Piridinas/farmacologia , Dosagem Radioterapêutica , Linfócitos T/metabolismo , TranscriptomaRESUMO
Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans.
Assuntos
Fadiga/tratamento farmacológico , Nootrópicos/uso terapêutico , Hormônio Liberador de Tireotropina/análogos & derivados , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Neoplasias do Colo/complicações , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Fadiga/etiologia , Feminino , Fluoruracila/efeitos adversos , Raios gama/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Hormônio Liberador da Tireotropina/genética , Hormônio Liberador de Tireotropina/uso terapêuticoRESUMO
Cancer-related fatigue (CRF) is a distressing and costly condition that often affects patients receiving cancer treatments, including radiation therapy. Here we describe a method using targeted peripheral irradiation to induce fatigue-like behavior in mice. With appropriate shielding, the irradiation targets the lower abdominal/pelvic region of the mouse, sparing the brain, in an effort to model radiation treatment received by individuals with pelvic cancers. We deliver an irradiation dose that is sufficient to induce fatigue-like behavior in mice, measured by voluntary wheel-running activity (VWRA), without causing obvious morbidity. Since wheel running is a normal, voluntary behavior in mice, its use should have little confounding effect on other behavioral tests or biological measures. Hence, wheel running can be used as a feasible outcome measure in understanding the behavioral and biological correlates of fatigue. CRF is a complex condition with frequent comorbidities, and likely has causes related both to cancer and its various treatments. The methods described in this paper are useful for investigating radiation-induced changes that contribute to the development of CRF and, more generally, to explore the biological networks that can explain the development and persistence of a peripherally-triggered but centrally-driven behavior like fatigue.
Assuntos
Abdome/efeitos da radiação , Modelos Animais de Doenças , Fadiga/etiologia , Atividade Motora/efeitos da radiação , Pelve/efeitos da radiação , Radioterapia Conformacional/efeitos adversos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Fatigue is one of the most debilitating adverse effects of cancer therapy. Identifying biomarkers early during cancer therapy may help us understand the biologic underpinnings of the persistence of fatigue following therapy. OBJECTIVE: We aimed to identify early biomarkers of fatigue by examining correlations of levels of cytokines during external beam radiation therapy (EBRT) with persistence of fatigue 1 year following treatment completion in men with nonmetastatic prostate cancer (NM-PC). METHODS: A sample of 34 men with nonmetastatic prostate cancer scheduled to receive EBRT were followed up at baseline (T1), midpoint of EBRT (T2), and 1 year following EBRT (T3). Demographic and clinical data were obtained by chart review. The Functional Assessment of Cancer Therapy-Fatigue was administered to measure fatigue levels. Plasma cytokine levels were determined at T1 and T2 using the Bio-Rad Bio-Plex Cytokine Assay Kits. RESULTS: Significant correlations were observed between levels of interleukin 2 (IL-3), IL-8, IL-9, IL-10, IL-16, interferon γ-induced protein 10, interferon α2, interferon γ, and stromal cell-derived factor 1α at T2 with worsening of fatigue from T1 to T3. CONCLUSIONS: Immunological changes prior to chronic fatigue development may reflect the long-term response to radiation therapy-induced damage. IMPLICATIONS FOR PRACTICE: Early biomarkers for chronic fatigue related to cancer therapy will help advance our understanding of the etiology of this distressing symptom and will help nurses identify patients at risk of developing chronic fatigue after cancer treatment. This information will also aid in patient education, as well as symptom management.
Assuntos
Citocinas/sangue , Fadiga/sangue , Fadiga/etiologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/radioterapia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doença Crônica , Seguimentos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
In a bright-field measurement from a vertebrate brain stained by superfusing a solution of the dye over the surface, each pixel in a camera receives light from a substantial number (thousands) of neurons and neuronal processes (population signals). Because of scattering and out-of-focus light, this will be true even if the pixel size corresponds to a small area of the brain. In this situation, the voltage-sensitive dye signal will be a population average of the change in membrane potential of all of these neurons and processes. Many investigators have published voltage-sensitive dye imaging studies of population activities in brain slices. Their methods, including choice of dyes, illumination intensity, and imaging device, vary across a large spectrum. Here we present a protocol for visualizing spatiotemporal patterns in rodent neocortex in vitro. Detecting these patterns requires high-sensitivity imaging in single trials, because averaging will obscure the complex dynamics of the spatiotemporal patterns.
Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Ratos Long-Evans , Ratos WistarRESUMO
Optical recording of membrane potential allows simultaneous measurements to be taken from many different locations in the nervous system. This is important in studies of the nervous system in which simultaneous activity can occur at the regional, cellular, and subcellular levels. New "blue" dyes, developed by Amiram Grinvald's group, are a great advance for in vivo voltage-sensitive dye imaging of mammalian cortex. The blue dyes are excited by red light (630 nm) that does not overlap with light absorption of hemoglobin (510-590 nm). This virtually eliminates the heart pulsation artifact.
Assuntos
Córtex Cerebral/fisiologia , Córtex Cerebral/fisiopatologia , Corantes/metabolismo , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Ratos Long-Evans , Ratos WistarRESUMO
Neuronal populations with unbalanced inhibition can generate interictal spikes (ISs), where each IS starts from a small initiation site and then spreads activation across a larger area. We used in vivo voltage-sensitive dye imaging to map the initiation site of ISs in rat visual cortex disinhibited by epidural application of bicuculline methiodide. Immediately after the application of bicuculline, the IS initiation sites were widely distributed over the entire disinhibited area. After â¼ 10 min, a small number of sites became "dominant" and initiated the majority of the ISs throughout the course of imaging. Such domination also occurred in cortical slices, which lack long-range connections between the cortex and subcortical structures. This domination of IS initiation sites may allow timing-related plasticity mechanisms to provide a spatial organization where connections projecting outward from the dominant initiation site become strengthened. Understanding the spatiotemporal organization of IS initiation sites may contribute to our understanding of epileptogenesis in its very early stages, because a dominant IS initiation site with strengthened outward connectivity may ultimately develop into a seizure focus.
Assuntos
Potenciais de Ação , Neocórtex/fisiologia , Inibição Neural , Córtex Visual/fisiologia , Animais , Bicuculina/farmacologia , Convulsivantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Córtex Visual/efeitos dos fármacosRESUMO
Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a "passive component," which corresponds to membrane potential changes directly induced by the electric field; and an "active component," which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local "hot spot" of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population.
Assuntos
Fenômenos Eletromagnéticos , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Estimulação Elétrica , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neurônios/citologia , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à VoltagemRESUMO
A recent article in Acta Psychologica ("Picture-plane inversion leads to qualitative changes of face perception" by Rossion [Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica (Amst), 128(2), 274-289]) criticized several aspects of an earlier paper of ours [Riesenhuber, M., Jarudi, I., Gilad, S., & Sinha, P. (2004). Face processing in humans is compatible with a simple shape-based model of vision. Proceedings of the Royal Society of London B (Supplements), 271, S448-S450]. We here address Rossion's criticisms and correct some misunderstandings. To frame the discussion, we first review our previously presented computational model of face recognition in cortex [Jiang, X., Rosen, E., Zeffiro, T., Vanmeter, J., Blanz, V., & Riesenhuber, M. (2006). Evaluation of a shape-based model of human face discrimination using FMRI and behavioral techniques. Neuron, 50(1), 159-172] that provides a concrete biologically plausible computational substrate for holistic coding, namely a neural representation learned for upright faces, in the spirit of the original simple-to-complex hierarchical model of vision by Hubel and Wiesel. We show that Rossion's and others' data support the model, and that there is actually a convergence of views on the mechanisms underlying face recognition, in particular regarding holistic processing.