Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399354

RESUMO

BACKGROUND: Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS: This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS: Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS: Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.


Assuntos
Melanoma , Osteossarcoma , Neoplasias Pancreáticas , Camundongos , Animais , Ligantes , Células Mieloides , Imunoterapia , Diferenciação Celular , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497393

RESUMO

High levels of myeloid-derived cells are characteristic of the tumor microenvironment (TME) of advanced melanoma. These cells interact with tumor cells to suppress the development of antitumor immune responses, regulate tumor metastasis, and drive cancer's resistance to virtually all types of therapy. Therefore, methods to disrupt tumor-associated myeloid cell function are actively being sought to find a cure. Our team has recently developed a plant-derived carbohydrate molecule, BG34-200, that modulates tumor-associated myeloid cells by targeting the cell surface receptor CD11b. In this study, we found that BG34-200 IV administration could significantly inhibit tumor growth and improve survival in B16F10 mice with advanced melanoma. Our data supported a model that the entry of BG34-200 into circulating melanoma tumor-associated inflammatory monocytes (TAIMs) could trigger a sequential immune activation: the BG34-200+ TAIM subsets migrated to tumor and differentiated into monocyte-derived dendritic cells (mo-DCs); then, the BG34-200+ mo-DCs migrated to tumor draining lymph nodes, where they triggered the generation of tumor-antigen-specific T cells. Based upon these results, we combined BG34-200 treatment with adoptive transfer of TdLN-derived T cells to treat advanced melanoma, which significantly improved animal survival and helped tumor-free survivors be resistant to a second tumor-cell challenge. The scientific findings from this study will allow us to develop new technology and apply BG34-200-based immunotherapy to patients with advanced melanoma who have not responded to current standard of care therapies with and without immunotherapy.

3.
Sci Rep ; 11(1): 9477, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947892

RESUMO

Obesity and its sequelae have a major impact on human health. The stomach contributes to obesity in ways that extend beyond its role in digestion, including through effects on the microbiome. Gastrokine-1 (GKN1) is an anti-amyloidogenic protein abundantly and specifically secreted into the stomach lumen. We examined whether GKN1 plays a role in the development of obesity and regulation of the gut microbiome. Gkn1-/- mice were resistant to diet-induced obesity and hepatic steatosis (high fat diet (HFD) fat mass (g) = 10.4 ± 3.0 (WT) versus 2.9 ± 2.3 (Gkn1-/-) p < 0.005; HFD liver mass (g) = 1.3 ± 0.11 (WT) versus 1.1 ± 0.07 (Gkn1-/-) p < 0.05). Gkn1-/- mice also exhibited increased expression of the lipid-regulating hormone ANGPTL4 in the small bowel. The microbiome of Gkn1-/- mice exhibited reduced populations of microbes implicated in obesity, namely Firmicutes of the class Erysipelotrichia. Altered metabolism consistent with use of fat as an energy source was evident in Gkn1-/- mice during the sleep period. GKN1 may contribute to the effects of the stomach on the microbiome and obesity. Inhibition of GKN1 may be a means to prevent obesity.


Assuntos
Mucosa Gástrica/metabolismo , Obesidade/metabolismo , Hormônios Peptídicos/metabolismo , Estômago/patologia , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Dieta/efeitos adversos , Fígado Gorduroso/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA