Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Proteomics ; : 105246, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964537

RESUMO

The 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on "Artificial Intelligence in proteomics" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.

2.
iScience ; 27(5): 109650, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38650989

RESUMO

Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.

3.
J Clin Periodontol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660744

RESUMO

AIM: This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS: Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS: Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS: Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.

4.
Int J Biol Macromol ; 254(Pt 1): 127666, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890743

RESUMO

The spotted pod borer, Maruca vitrata (Lepidoptera: Crambidae) is a destructive insect pest that inflicts significant productivity losses on important leguminous crops. Unravelling insect proteomes is vital to comprehend their fundamental molecular mechanisms. This research delved into the proteome profiles of four distinct stages -three larval and pupa of M. vitrata, utilizing LC-MS/MS label-free quantification-based methods. Employing comprehensive proteome analysis with fractionated datasets, we mapped 75 % of 3459 Drosophila protein orthologues out of which 2695 were identified across all developmental stages while, 137 and 94 were exclusive to larval and pupal stages respectively. Cluster analysis of 2248 protein orthologues derived from MaxQuant quantitative dataset depicted six clusters based on expression pattern similarity across stages. Consequently, gene ontology and protein-protein interaction network analyses using STRING database identified cluster 1 (58 proteins) and cluster 6 (25 proteins) associated with insect immune system and lipid metabolism. Furthermore, qRT-PCR-based expression analyses of ten selected proteins-coding genes authenticated the proteome data. Subsequently, functional validation of these chosen genes through gene silencing reduced their transcript abundance accompanied by a marked increase in mortality among dsRNA-injected larvae. Overall, this is a pioneering study to effectively develop a proteome atlas of M. vitrata as a potential resource for crop protection programs.


Assuntos
Mariposas , Proteoma , Animais , Frutas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mariposas/genética , Larva/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
J Proteome Res ; 22(4): 1092-1104, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36939687

RESUMO

Mass spectrometry is widely used for quantitative proteomics studies, relative protein quantification, and differential expression analysis of proteins. There is a large variety of quantification software and analysis tools. Nevertheless, there is a need for a modular, easy-to-use application programming interface in R that transparently supports a variety of well principled statistical procedures to make applying them to proteomics data, comparing and understanding their differences easy. The prolfqua package integrates essential steps of the mass spectrometry-based differential expression analysis workflow: quality control, data normalization, protein aggregation, statistical modeling, hypothesis testing, and sample size estimation. The package makes integrating new data formats easy. It can be used to model simple experimental designs with a single explanatory variable and complex experiments with multiple factors and hypothesis testing. The implemented methods allow sensitive and specific differential expression analysis. Furthermore, the package implements benchmark functionality that can help to compare data acquisition, data preprocessing, or data modeling methods using a gold standard data set. The application programmer interface of prolfqua strives to be clear, predictable, discoverable, and consistent to make proteomics data analysis application development easy and exciting. Finally, the prolfqua R-package is available on GitHub https://github.com/fgcz/prolfqua, distributed under the MIT license. It runs on all platforms supported by the R free software environment for statistical computing and graphics.


Assuntos
Proteômica , Software , Proteômica/métodos , Proteínas/análise , Modelos Estatísticos , Espectrometria de Massas/métodos
6.
JOR Spine ; 6(1): e1237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994463

RESUMO

Background: Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims: The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods: Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results: Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion: The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion: MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.

7.
Neoplasia ; 35: 100858, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508875

RESUMO

Fibrosarcoma (FSA) are rare soft tissue tumors that display aggressive local behavior and invasive growth leading to high rates of tumor recurrence. While the low incidence in humans hampers detailed understanding of the disease, FSA are frequent in dogs and present potential models for the human condition. However, a lack of in-depth molecular characterization of FSA and unaffected peritumoral tissue (PTT) in both species impedes the translational potential of dogs. To address this shortcoming, we characterized canine FSA and matched skeletal muscle, adipose and connective tissue using laser-capture microdissection (LCM) and LC-MS/MS in 30 formalin-fixed paraffin embedded (FFPE) specimens. Principal component analysis of 3'530 different proteins detected across all samples clearly separates the four tissues, with several targets strongly differentiating tumor from all three PTTs. 25 proteins were exclusively found in tumor tissue in ≥80% of cases. Among these, CD68 (a macrophage marker), Optineurin (OPTN), Nuclear receptor coactivator 5 (NCOA5), RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) and Stromal cell derived factor 2 like 1 (SDF2L1) were present in ≥90% of FSA. Protein expression across all FSA was highly homogeneous and characterized by MYC and TP53 signaling, hyperactive EIF2 and immune-related changes as well as strongly decreased oxidative phosphorylation and oxidative lipid metabolism. Finally, we demonstrate significant molecular homology between canine FSA and human soft-tissue sarcomas, emphasizing the relevance of studying canine FSA as a model for human FSA. In conclusion, we provide the first detailed overview of proteomic changes in FSA and surrounding PTT with relevance for the human disease.


Assuntos
Fibrossarcoma , Proteômica , Cães , Humanos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Recidiva Local de Neoplasia , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia
8.
Sci Data ; 9(1): 699, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376331

RESUMO

The data currently described was generated within the EU/FP7 HeCaToS project (Hepatic and Cardiac Toxicity Systems modeling). The project aimed to develop an in silico prediction system to contribute to drug safety assessment for humans. For this purpose, multi-omics data of repeated dose toxicity were obtained for 10 hepatotoxic and 10 cardiotoxic compounds. Most data were gained from in vitro experiments in which 3D microtissues (either hepatic or cardiac) were exposed to a therapeutic (physiologically relevant concentrations calculated through PBPK-modeling) or a toxic dosing profile (IC20 after 7 days). Exposures lasted for 14 days and samples were obtained at 7 time points (therapeutic doses: 2-8-24-72-168-240-336 h; toxic doses 0-2-8-24-72-168-240 h). Transcriptomics (RNA sequencing & microRNA sequencing), proteomics (LC-MS), epigenomics (MeDIP sequencing) and metabolomics (LC-MS & NMR) data were obtained from these samples. Furthermore, functional endpoints (ATP content, Caspase3/7 and O2 consumption) were measured in exposed microtissues. Additionally, multi-omics data from human biopsies from patients are available. This data is now being released to the scientific community through the BioStudies data repository ( https://www.ebi.ac.uk/biostudies/ ).


Assuntos
Cardiotoxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Epigenômica , Metabolômica , Proteômica , Transcriptoma
9.
Biomedicines ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35884808

RESUMO

Intestinal microbiota can modulate portal hypertension through the regulation of the intestinal vasculature. We have recently demonstrated that bacterial antigens activate Paneth cells (PCs) to secrete products that regulate angiogenesis and portal hypertension. In the present work we hypothesized that Paneth cells regulate the development of lymphatic vessels under the control of intestinal microbiota during experimental portal hypertension. We used a mouse model of inducible PCs depletion (Math1Lox/LoxVilCreERT2) and performed partial portal vein ligation (PPVL) to induce portal hypertension. After 14 days, we performed mRNA sequencing and evaluated the expression of specific lymphangiogenic genes in small intestinal tissue. Intestinal and mesenteric lymphatic vessels proliferation was assessed by immunohistochemistry. Intestinal organoids with or without PCs were exposed to pathogen-associated molecular patterns, and conditioned media (CM) was used to stimulate human lymphatic endothelial cells (LECs). The lymphangiogenic activity of stimulated LECs was assessed by tube formation and wound healing assays. Secretome analysis of CM was performed using label-free proteomics quantification methods. Intestinal immune cell infiltration was evaluated by immunohistochemistry. We observed that the intestinal gene expression pattern was altered by the absence of PCs only in portal hypertensive mice. We found a decreased expression of specific lymphangiogenic genes in the absence of PCs during portal hypertension, resulting in a reduced proliferation of intestinal and mesenteric lymphatic vessels as compared to controls. In vitro analyses demonstrated that lymphatic tube formation and endothelial wound healing responses were reduced significantly in LECs treated with CM from organoids without PCs. Secretome analyses of CM revealed that PCs secrete proteins that are involved in lipid metabolism, cell growth and proliferation. Additionally, intestinal macrophages infiltrated the ileal mucosa and submucosa of mice with and without Paneth cells in response to portal hypertension. Our results suggest that intestinal microbiota signals stimulate Paneth cells to secrete factors that modulate the intestinal and mesenteric lymphatic vessels network during experimental portal hypertension.

11.
Clin Nutr ESPEN ; 48: 282-290, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35331503

RESUMO

BACKGROUND: By means of a structured nutritional support intervention, EFFORT showed a risk reduction for adverse events in medical in-patients. We were interested in the prognostic and therapeutic potential of an untargeted proteomics approach to understand response to nutritional support, risk of 30-day mortality, and distinct patterns in severity of malnutrition risk as assessed by the Nutritional Risk screening (NRS 2002), respectively. METHODS: From 2,088 patients, we randomly took 120 blood samples drawn before treatment initiation on day 1 after hospital admission. Cases were selected by treatment allocation (nutritional support vs. usual nutrition), NRS 2002, and mortality at 30 days, but not on disease type. We measured proteins by untargeted liquid chromatography mass spectrometry (LC-MS/MS). RESULTS: We found 242 distinct proteins in 120 patients of which 81 (67.5%) survived until day 30. Between group analysis revealed a slight difference between the treatment groups in patients with a NRS 3, but not in those with a higher NRS. C-statistic between non-survivors and survivors at day 30 ranged from 0.60 (95% confidence interval 0.34-0.78) for a combination of 3 proteins/predictors to 0.65 (95% CI 0.53-0.78) for a combination of 32 proteins/predictors. In nutritional support non-survivors, pathway analysis found significant enrichment in pathways for signal transduction, platelet function, immune system regulation, extracellular matrix organization, and integrin cell surface interactions compared to survivors. CONCLUSION: Within this pilot study using an untargeted proteomics approach, there was only little prognostic and therapeutic potential of proteomics for phenotyping the risk of malnutrition and response to nutritional therapy. The small sample size and high heterogeneity of our population regarding comorbidity burden calls for more targeted approaches in more homogenous populations to understand the true potential of proteomics for individualizing nutritional care. TRIAL REGISTRATION: This is a pre-planned secondary analysis of the EFFORT trial (ClinicalTrials.gov NCT02517476).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Apoio Nutricional/métodos , Projetos Piloto
12.
Blood Adv ; 6(11): 3480-3493, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35008095

RESUMO

Polycythemia vera (PV) is a stem cell disorder characterized by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. To elucidate mechanisms controlling PV stem and progenitor cell biology, we applied a recently developed highly sensitive data-independent acquisition mass spectrometry workflow to purified hematopoietic stem and progenitor cell (HSPC) subpopulations of patients with chronic and progressed PV. We integrated proteomic data with genomic, transcriptomic, flow cytometry, and in vitro colony formation data. Comparative analyses revealed added information gained by proteomic compared with transcriptomic data in 30% of proteins with changed expression in PV patients. Upregulated biological pathways in hematopoietic stem and multipotent progenitor cells (HSC/MPPs) of PV included mammalian target of rapamycin (MTOR), STAT, and interferon signaling. We further identified a prominent reduction of clusterin (CLU) protein expression and a corresponding activation of nuclear factor-κB (NF-κB) signaling in HSC/MPPs of untreated PV patients compared with controls. Reversing the reduction of CLU and inhibiting NF-κB signaling decreased proliferation and differentiation of PV HSC/MPPs in vitro. Upon progression of PV, we identified upregulation of LGALS9 and SOCS2 protein expression in HSC/MPPs. Treatment of patients with hydroxyurea normalized the expression of CLU and NF-κB2 but not of LGALS9 and SOCS2. These findings expand the current understanding of the molecular pathophysiology underlying PV and provide new potential targets (CLU and NF-κB) for antiproliferative therapy in patients with PV.


Assuntos
Policitemia Vera , Proliferação de Células , Células-Tronco Hematopoéticas , Humanos , Janus Quinase 2/genética , NF-kappa B , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Proteômica
13.
Stem Cell Reports ; 17(1): 110-126, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34919811

RESUMO

The apolipoprotein E4 (APOE4) variant is the strongest genetic risk factor for Alzheimer disease (AD), while the APOE2 allele is protective. A major question is how different APOE genotypes affect the physiology of astrocytes, the main APOE-producing brain cells. Here, we differentiated human APOE-isogenic induced pluripotent stem cells (iPSCs) (APOE4, E3, E2, and APOE knockout [APOE-KO]) to functional "iAstrocytes". Mass-spectrometry-based proteomic analysis showed genotype-dependent reductions of cholesterol and lipid metabolic and biosynthetic pathways (reduction: APOE4 >E3 >E2). Cholesterol efflux and biosynthesis were reduced in APOE4 iAstrocytes, while subcellular localization of cholesterol in lysosomes was elevated. An increase in immunoregulatory proteomic pathways (APOE4 >E3 >E2) was accompanied by elevated cytokine release in APOE4 cells (APOE4 >E3 >E2 >KO). Activation of iAstrocytes exacerbated proteomic changes and cytokine secretion mostly in APOE4 iAstrocytes, while APOE2 and APOE-KO iAstrocytes were least affected. Taken together, APOE4 iAstrocytes reveal a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signaling, and reduced ß-amyloid uptake, while APOE2 iAstrocytes show opposing effects.


Assuntos
Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrócitos/metabolismo , Diferenciação Celular/genética , Homeostase , Células-Tronco Pluripotentes Induzidas/citologia , Alelos , Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Ciclo Celular/genética , Colesterol/metabolismo , Genótipo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
14.
Nat Commun ; 12(1): 6924, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836971

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular/fisiologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Linhagem Celular Tumoral , Criança , Cromatina , DNA Helicases/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Músculo Esquelético , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Ativação Transcricional
15.
Clin Nutr ; 40(9): 5062-5070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34455264

RESUMO

BACKGROUND & AIMS: The EFFORT trial reported a substantial risk reduction for adverse events and mortality in medical in-patients receiving a nutritional support intervention. With the use of an untargeted metabolomics approach, we investigated the prognostic and therapeutic potential of metabolomic markers to understand, whether there are distinct metabolic patterns associated with malnutrition risk as assessed by the Nutritional Risk screening (NRS 2002) score, the risk of 30-day mortality and the response to nutritional support, respectively. METHODS: Out of the 2088 samples we randomly selected 120 blood samples drawn on day 1 after hospital admission and before treatment initiation. Samples were stratified by NRS 2002, treatment allocation (intervention vs. control), and mortality at 30 days, but not on the type of medical illness. We performed untargeted analysis by liquid chromatography mass spectrometry (LC-MS/MS). RESULTS: We measured 1389 metabolites in 120 patients of which 81 (67.5%) survived until day 30. After filtering, 371 metabolites remained, and 200 were matched to one or more Human Metabolome Data Base (HMDB) entries. Between group analysis showed a slight distinction between the treatment groups for patients with a NRS 3, but not for those with NRS 4 and ≥ 5. C-statistic between those who died and survived at day 30 ranged from 0.49 (95% confidence interval 0.35-0.68) for a combination of 5 metabolites/predictors to 0.66 (95% confidence interval 0.53-0.79) for a combination of 100 metabolites. Pathway analysis found significant enrichment in the pathways for nitrogen, vitamin B3 (nicotinate and nicotinamide), leukotriene, and arachidonic acid metabolisms in nutritional support responders compared to non-responders. CONCLUSION: In our heterogenous population of medical inpatients with different illnesses and comorbidities, metabolomic markers showed little prognostic and therapeutic potential for better phenotyping malnutrition and response to nutritional therapy. Future studies should focus on more selected patient populations to understand whether a metabolomic approach can advance the nutritional care of patients.


Assuntos
Desnutrição/diagnóstico , Desnutrição/mortalidade , Avaliação Nutricional , Apoio Nutricional/mortalidade , Medição de Risco/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Cromatografia Líquida , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Pacientes Internados/estatística & dados numéricos , Masculino , Desnutrição/terapia , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Metabolômica , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Espectrometria de Massas em Tandem , Resultado do Tratamento
17.
Commun Biol ; 3(1): 573, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060801

RESUMO

Uncovering cellular responses from heterogeneous genomic data is crucial for molecular medicine in particular for drug safety. This can be realized by integrating the molecular activities in networks of interacting proteins. As proof-of-concept we challenge network modeling with time-resolved proteome, transcriptome and methylome measurements in iPSC-derived human 3D cardiac microtissues to elucidate adverse mechanisms of anthracycline cardiotoxicity measured with four different drugs (doxorubicin, epirubicin, idarubicin and daunorubicin). Dynamic molecular analysis at in vivo drug exposure levels reveal a network of 175 disease-associated proteins and identify common modules of anthracycline cardiotoxicity in vitro, related to mitochondrial and sarcomere function as well as remodeling of extracellular matrix. These in vitro-identified modules are transferable and are evaluated with biopsies of cardiomyopathy patients. This to our knowledge most comprehensive study on anthracycline cardiotoxicity demonstrates a reproducible workflow for molecular medicine and serves as a template for detecting adverse drug responses from complex omics data.


Assuntos
Metaboloma , Modelos Biológicos , Proteoma , Transcriptoma , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteômica/métodos , Sarcômeros/genética , Sarcômeros/metabolismo , Transdução de Sinais
18.
Appl Microbiol Biotechnol ; 104(17): 7603-7618, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32686005

RESUMO

The pigeonpea wild relative Cajanus platycarpus is resistant to Helicoverpa armigera, one of the major pests responsible for yield losses in Cajanus cajan. Deciphering the molecular mechanism underlying host plant resistance is pertinent to identify proteins that aid in the mitigation of the insect pest. The present study adopted comparative proteomics as a tool to interpret the resistance mechanism(s) in C. platycarpus vis-à-vis C. cajan during continued herbivory (up to 96 h). Over-representation analysis of the differentially expressed proteins implicated a multi-dimensional resistance response accomplished by both physical and chemical barriers in C. platycarpus. While the chemical basis for resistance was depicted by the upregulation of proteins playing a rate limiting role in the phenylpropanoid pathway, the physical basis was provided by the regulation of proteins involved in microtubule assembly and synthesis of lignins. Upregulation of proteins in the polyamine pathway indicated the role of metabolite conjugates to be negatively affecting herbivore growth. Reallocation of resources and diversion of metabolic flux to support the production of secondary metabolites could be the probable approach in the wild relative against herbivory. Our study provided deeper insights into the pod borer resistance mechanism in C. platycarpus for utility in crop improvement. KEY POINTS: • Pod borer resistance in Cajanus platycarpus is multi-dimensional. • Pod borer resistance has been arbitrated to cell wall rigidity and secondary metabolites. • Phenylpropanoid pathway derivatives apparently shaped the plant chemical defense against pod borer.


Assuntos
Cajanus , Mariposas , Animais , Herbivoria , Proteômica
19.
J Hepatol ; 73(3): 628-639, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32205193

RESUMO

BACKGROUND & AIMS: Paneth cells (PCs) synthesize and secrete antimicrobial peptides that are key mediators of host-microbe interactions, establishing a balance between intestinal microflora and enteric pathogens. We observed that their number increases in experimental portal hypertension and aimed to investigate the mechanisms by which these cells can contribute to the regulation of portal pressure. METHODS: We first treated Math1Lox/LoxVilcreERT2 mice with tamoxifen to induce the complete depletion of intestinal PCs. Subsequently, we performed partial portal vein or bile duct ligation. We then studied the effects of these interventions on hemodynamic parameters, proliferation of blood vessels and the expression of genes regulating angiogenesis. Intestinal organoids were cultured and exposed to different microbial products to study the composition of their secreted products (by proteomics) and their effects on the proliferation and tube formation of endothelial cells (ECs). In vivo confocal laser endomicroscopy was used to confirm the findings on blood vessel proliferation. RESULTS: Portal hypertension was significantly attenuated in PC-depleted mice compared to control mice and was associated with a decrease in portosystemic shunts. Depletion of PCs also resulted in a significantly decreased density of blood vessels in the intestinal wall and mesentery. Furthermore, we observed reduced expression of intestinal genes regulating angiogenesis in Paneth cell depleted mice using arrays and next generation sequencing. Tube formation and wound healing responses were significantly decreased in ECs treated with conditioned media from PC-depleted intestinal organoids exposed to intestinal microbiota-derived products. Proteomic analysis of conditioned media in the presence of PCs revealed an increase in factors regulating angiogenesis and additional metabolic processes. In vivo endomicroscopy showed decreased vascular proliferation in the absence of PCs. CONCLUSIONS: These results suggest that in response to intestinal flora and microbiota-derived factors, PCs secrete not only antimicrobial peptides, but also pro-angiogenic signaling molecules, thereby promoting intestinal and mesenteric angiogenesis and regulating portal hypertension. LAY SUMMARY: Paneth cells are present in the lining of the small intestine. They prevent the passage of bacteria from the intestine into the blood circulation by secreting substances to fight bacteria. In this paper, we discovered that these substances not only act against bacteria, but also increase the quantity of blood vessels in the intestine and blood pressure in the portal vein. This is important, because high blood pressure in the portal vein may result in several complications which could be targeted with novel approaches.


Assuntos
Infecções por Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Hipertensão Portal/metabolismo , Hipertensão Portal/microbiologia , Neovascularização Patológica/metabolismo , Celulas de Paneth/metabolismo , Animais , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Transgênicos , Organoides/metabolismo , Organoides/microbiologia , Celulas de Paneth/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteoma , Proteômica/métodos , Tamoxifeno/farmacologia
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA