Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Hematol ; 99(4): 586-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317420

RESUMO

Blinatumomab is a BiTE® (bispecific T-cell engager) molecule that redirects CD3+ T-cells to engage and lyse CD19+ target cells. Here we demonstrate that subcutaneous (SC) blinatumomab can provide high efficacy and greater convenience of administration. In the expansion phase of a multi-institutional phase 1b trial (ClinicalTrials.gov, NCT04521231), heavily pretreated adults with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) received SC blinatumomab at two doses: (1) 250 µg once daily (QD) for week 1 and 500 µg three times weekly (TIW) thereafter (250 µg/500 µg) or (2) 500 µg QD for week 1 and 1000 µg TIW thereafter (500 µg/1000 µg). The primary endpoint was complete remission/complete remission with partial hematologic recovery (CR/CRh) within two cycles. At the data cutoff of September 15, 2023, 29 patients were treated: 14 at the 250 µg/500 µg dose and 13 at 500 µg/1000 µg dose. Data from two ineligible patients were excluded. At the end of two cycles, 12 of 14 patients (85.7%) from the 250 µg/500 µg dose achieved CR/CRh of which nine patients (75.0%) were negative for measurable residual disease (MRD; <10-4 leukemic blasts). At the 500 µg/1000 µg dose, 12 of 13 patients (92.3%) achieved CR/CRh; all 12 patients (100.0%) were MRD-negative. No treatment-related grade 4 cytokine release syndrome (CRS) or neurologic events (NEs) were reported. SC injections were well tolerated and all treatment-related grade 3 CRS and NEs responded to standard-of-care management, interruption, or discontinuation. Treatment with SC blinatumomab resulted in high efficacy, with high MRD-negativity rates and acceptable safety profile in heavily pretreated adults with R/R B-ALL.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Indução de Remissão , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Anticorpos Biespecíficos/efeitos adversos , Linfoma de Células B/tratamento farmacológico , Resposta Patológica Completa , Doença Aguda , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Antineoplásicos/efeitos adversos
2.
Clin Pharmacol Ther ; 115(3): 457-467, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37746860

RESUMO

Bispecific T cell engagers (Bi-TCEs) have revolutionized the treatment of oncology indications across both liquid and solid tumors. Bi-TCEs are rapidly evolving from conventional intravenous (i.v.) to more convenient subcutaneous (s.c.) administrations and extending beyond adults to also benefit pediatric patients. Leveraging clinical development experience across three generations of Bi-TCE molecules across both liquid and solid tumor indications from i.v./s.c. dosing in adults and pediatric subjects, we developed a mechanistic-physiologically-based pharmacokinetic (PBPK) platform model for Bi-TCEs. The model utilizes a full PBPK model framework and was successfully validated for PK predictions following i.v. and s.c. dosing across both liquid and solid tumor space in adults for eight Bi-TCEs. After refinement to incorporate physiological ontogeny, the model was successfully validated to predict pediatric PKs in 1 month - < 2 years, 2-11 years, and 12-17 years old subjects following i.v. dosing. Following s.c. dosing in pediatric subjects, the model predicted similar bioavailability, however, a shorter time to maximum concentration (Tmax ) for the three age groups compared with adults. The model was also applied to guide the dosing strategy for first generation of Bi-TCEs for organ impairment, specifically renal impairment, and was able to accurately predict the impact of renal impairment on PK for these relatively small-size Bi-TCEs. This work highlights a novel mechanistic platform model for accurately predicting the PK in adult and pediatric patients across liquid and solid tumor indications from i.v./s.c. dosing and can be used to guide optimal dose and dosing regimen selection and accelerating the clinical development for Bi-TCEs.


Assuntos
Neoplasias , Linfócitos T , Adulto , Criança , Humanos , Administração Intravenosa , Neoplasias/tratamento farmacológico , Modelos Biológicos
3.
Invest New Drugs ; 40(5): 1051-1065, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635631

RESUMO

BACKGROUND: Targeting the MDM2-p53 interaction using AMG 232 is synergistic with MAPK inhibitors (MAPKi) in preclinical melanoma models. We postulated that AMG 232 plus MAPKi is safe and more effective than MAPKi alone in TP53-wild type, MAPKi-naïve metastatic melanoma. METHODS: Patients were treated with increasing (120 mg, 180 mg, 240 mg) oral doses of AMG 232 (seven-days-on, 15-days-off, 21-day cycle) plus dabrafenib (D) and trametinib (T) (Arm 1, BRAFV600-mutant) or T alone (Arm 2, BRAFV600-wild type). Patients were treated for seven days with AMG 232 alone before adding T±D. Safety and efficacy were assessed using CTCAE v4.0 and RECIST v1.1 criteria, respectively. Pharmacokinetic (PK) analysis was performed at baseline and steady-state levels for AMG 232. RESULTS: 31 patients were enrolled. Ten and 21 patients were enrolled in Arm 1 and Arm 2, respectively. The most common AMG 232-related adverse events (AEs) were nausea (87%), diarrhea (77%), and fatigue (74%). Seven patients (23%) were withdrawn from the study due to AMG 232-related AEs. Three dose-limiting AEs occurred (Arm 1, 180 mg, nausea; Arm 2, 240 mg, grade 3 pulmonary embolism; Arm 2, 180 mg, grade 4 thrombocytopenia). AMG 232 PK exposures were not altered when AMG 232 was combined with T±D. Objective responses were seen in 8/10 (Arm 1) and 3/20 (Arm 2) evaluable patients. The median progression-free survival for Arm 1 and Arm 2 was 19.0 months-not reached and 2.8 months, respectively. CONCLUSION: The maximum tolerated dose of AMG 232 for both arms was 120 mg. AMG 232 plus T±D exhibited a favorable PK profile. Although objective responses occurred in both arms, adding AMG 232 to T±D did not confer additional clinical benefit.


Assuntos
Melanoma , Proteína Supressora de Tumor p53 , Acetatos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Náusea/induzido quimicamente , Piperidonas , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf , Piridonas/efeitos adversos , Pirimidinonas/efeitos adversos
4.
Leuk Lymphoma ; 63(9): 2063-2073, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503708

RESUMO

This open-label, multicenter, single-arm, phase 2 study assessed the safety and efficacy of blinatumomab consolidation therapy in adult patients with newly diagnosed, high-risk diffuse large B-cell lymphoma (DLBCL; International Prognostic Index 3-5 and/or double-/triple-hit or double MYC/BCL-2 expressors) who achieved complete response (CR), partial response (PR), or stable disease (SD) following run-in with 6 cycles of R-chemotherapy (NCT03023878). Of the 47 patients enrolled, 28 received blinatumomab. Five patients (17.9%) experienced grade 4 treatment-emergent adverse events of interest (neutropenia, n = 4; infection, n = 1). Two deaths reported at the end of the study were unrelated to treatment with blinatumomab (disease progression, n = 1; infection, n = 1). 3/4 patients with PR and 4/4 patients with SD after R-chemotherapy achieved CR following blinatumomab. Consolidation with blinatumomab in patients with newly diagnosed, high-risk DLBCL who did not progress under R-chemotherapy was better tolerated than in previous studies where blinatumomab was used for treatment of patients with lymphoma.


Assuntos
Anticorpos Biespecíficos , Linfoma Difuso de Grandes Células B , Adulto , Anticorpos Biespecíficos/efeitos adversos , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Indução de Remissão
5.
Nat Commun ; 13(1): 756, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140225

RESUMO

Manual interpretation of variants remains rate limiting in precision oncology. The increasing scale and complexity of molecular data generated from comprehensive sequencing of cancer samples requires advanced interpretative platforms as precision oncology expands beyond individual patients to entire populations. To address this unmet need, we introduce a Platform for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that facilitates the interpretation and reporting of somatic variants in cancer. PORI integrates reporting and graph knowledge base tools combined with support for manual curation at the reporting stage. PORI represents an open-source platform alternative to commercial reporting solutions suitable for comprehensive genomic data sets in precision oncology. We demonstrate the utility of PORI by matching 9,961 pan-cancer genome atlas tumours to the graph knowledge base, calculating therapeutically informative alterations, and making available reports describing select individual samples.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Biomarcadores Tumorais , Bases de Dados Genéticas , Variação Genética , Genômica , Humanos , Bases de Conhecimento , Medicina de Precisão
6.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33046621

RESUMO

BACKGROUND: To determine the safety and efficacy of the anti-colony-stimulating factor 1 receptor (anti-CSF1R) monoclonal antibody AMG 820 in combination with pembrolizumab in patients with select solid tumors. PATIENTS AND METHODS: Patients had advanced, refractory mismatch repair-proficient colorectal cancer, pancreatic cancer, or non-small cell lung cancer (NSCLC) with low (<50%) programmed cell death-ligand 1 (PD-L1) expression and were naïve to anti-programmed cell death-1 (PD-1)/PD-L1 or had relapsed/refractory NSCLC after anti-PD-1/PD-L1 treatment with low or high (≥50%) PD-L1 expression; all were anti-CSF1/CSF1R naïve. Patients received 1100 mg or 1400 mg AMG 820 plus 200 mg pembrolizumab intravenously every 3 weeks. The primary endpoints were incidence of dose-limiting toxicities (DLTs) and adverse events (AEs) and objective response rate per immune-related Response Evaluation Criteria in Solid Tumours at the recommended combination dose. RESULTS: Overall, 116 patients received ≥1 dose of AMG 820 plus pembrolizumab (18 at 1400 mg AMG 820; 98 at 1100 mg AMG 820). Most patients (64%) were male; the median age was 64 (range 30-86) years. Seven patients had DLTs (1 at 1400 mg AMG 820; 6 at 1100 mg AMG 820). Almost all patients (99.1%) had AEs, 87.9% with grade ≥3 AEs. The most common AEs were increased aspartate aminotransferase (59.5%), fatigue (48.3%), periorbital/face edema (48.3%), and rash/maculopapular rash (37.1%). The best response was immune-related partial response in 3 patients (3%; duration of response 9.2, 10.0, 12.5 months) and immune-related stable disease in 39 patients (34%). None of the completed phase II cohorts met the predefined threshold for efficacy. Post-treatment there was accumulation of serum colony-stimulating factor 1 (CSF1) and interleukin-34, reduction in CSF1-dependent CD16-expressing monocytes, and increased PD-L1 expression and CD4 and CD8 cell numbers in tumor biopsies. CONCLUSIONS: The recommended combination dose of 1100 mg AMG 820 plus 200 mg pembrolizumab had an acceptable safety profile. Although pharmacodynamic effects were observed, antitumor activity was insufficient for further evaluation of this combination in selected patient populations. TRIAL REGISTRATION NUMBER: NCT02713529.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Drug Metab Dispos ; 45(7): 712-720, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428366

RESUMO

Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site N-terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the pan-cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers.


Assuntos
Clorpromazina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores de Proteassoma/metabolismo , Administração Oral , Adulto , Clorpromazina/metabolismo , Interações Medicamentosas/fisiologia , Feminino , Meia-Vida , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Proteínas Recombinantes/metabolismo , Triazóis/metabolismo , Adulto Jovem
8.
Mol Cell Proteomics ; 15(10): 3233-3242, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503896

RESUMO

Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the ß5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.


Assuntos
Colestanotriol 26-Mono-Oxigenase/metabolismo , Glutationa Transferase/metabolismo , Oligopeptídeos/química , Inibidores de Proteassoma/síntese química , Linhagem Celular Tumoral , Química Click , Células Hep G2 , Humanos , Estrutura Molecular , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Espectrometria de Massas em Tandem
9.
Invest New Drugs ; 34(2): 216-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924128

RESUMO

PURPOSE: To determine the dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), safety, and pharmacokinetic and pharmacodynamic profiles of the tripeptide epoxyketone proteasome inhibitor oprozomib in patients with advanced refractory or recurrent solid tumors. METHODS: Patients received escalating once daily (QD) or split doses of oprozomib on days 1-5 of 14-day cycles (C). The split-dose arm was implemented and compared in fasted (C1) and fed (C2) states. Pharmacokinetic samples were collected during C1 and C2. Proteasome inhibition was evaluated in red blood cells and peripheral blood mononuclear cells. RESULTS: Forty-four patients (QD, n = 25; split dose, n = 19) were enrolled. The most common primary tumor types were non-small cell lung cancer (18%) and colorectal cancer (16%). In the 180-mg QD cohort, two patients experienced DLTs: grade 3 vomiting and dehydration; grade 3 hypophosphatemia (n = 1 each). In the split-dose group, three DLTs were observed (180-mg cohort: grade 3 hypophosphatemia; 210-mg cohort: grade 5 gastrointestinal hemorrhage and grade 3 hallucinations (n = 1 each). In the QD and split-dose groups, the MTD was 150 and 180 mg, respectively. Common adverse events (all grades) included nausea (91%), vomiting (86%), and diarrhea (61%). Peak concentrations and total exposure of oprozomib generally increased with the increasing dose. Oprozomib induced dose-dependent proteasome inhibition. Best response was stable disease. CONCLUSIONS: While generally low-grade, clinically relevant gastrointestinal toxicities occurred frequently with this oprozomib formulation. Despite dose-dependent increases in pharmacokinetics and pharmacodynamics, single-agent oprozomib had minimal antitumor activity in this patient population with advanced solid tumors.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Oligopeptídeos/efeitos adversos , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/efeitos adversos , Inibidores de Proteassoma/farmacocinética , Inibidores de Proteassoma/farmacologia
10.
Drug Metab Dispos ; 39(10): 1873-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752943

RESUMO

Carfilzomib [(2S)-N-[(S)-1-[(S)-4-methyl-1-[(R)-2-methyloxiran-2-yl]-1-oxopentan-2-ylcarbamoyl]-2-phenylethyl]-2-[(S)-2-(2-morpholinoacetamido)-4-phenylbutanamido]-4-methylpentanamide, also known as PR-171] is a selective, irreversible proteasome inhibitor that has shown encouraging results in clinical trials in multiple myeloma. In this study, the pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in Sprague-Dawley rats were characterized. After intravenous administration, the plasma concentration of carfilzomib declined rapidly in a biphasic manner. Carfilzomib displayed high plasma clearance [195-319 ml/(min · kg)], a short-terminal half-life (5-20 min), and rapid and wide tissue distribution in rats. The exposure to carfilzomib (C(max) and area under the curve) increased dose proportionally from 2 to 4 mg/kg but less than dose proportionally from 4 to 8 mg/kg. The high clearance was mediated predominantly by extrahepatic metabolism through peptidase cleavage and epoxide hydrolysis. Carfilzomib was excreted mainly as metabolites resulting from peptidase cleavage. Carfilzomib and its major metabolites in urine and bile accounted for approximately 26 and 31% of the total dose, respectively, for a total of 57% within 24 h postdose. Despite the high systemic clearance, potent proteasome inhibition was observed in blood and a variety of tissues. Together with rapid and irreversible target binding, the high clearance may provide an advantage in that "unnecessary" exposure to the drug is minimized and potential drug-related side effects may be reduced.


Assuntos
Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Animais , Bile/metabolismo , Compostos de Epóxi/metabolismo , Hidrólise , Masculino , Oligopeptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
Chem Res Toxicol ; 21(4): 796-804, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18324786

RESUMO

Mitochondria serve a pivotal role in the regulation of apoptosis or programmed cell death. Recent studies have demonstrated that reactive electrophiles induce mitochondrion-dependent apoptosis. We hypothesize that covalent modification of specific mitochondrial proteins by reactive electrophiles serves as a trigger leading to the initiation of apoptosis. In this study, we identified protein targets of the model biotin-tagged electrophile probes N-iodoacetyl- N-biotinylhexylene-diamine (IAB) and 1-biotinamido-4-(4'-[maleimidoethylcyclohexane]carboxamido)butane (BMCC) in HEK293 cell mitochondrial fractions by liquid chromatography-tandem mass spectrometry (LC-MS-MS). These electrophiles reproducibly adducted a total of 1693 cysteine residues that mapped to 809 proteins. Protein modifications were selective in that only 438 cysteine sites in 1255 cysteinyl peptide adducts (35%) and 362 of the 809 identified protein targets (45%) were adducted by both electrophiles. Of these, approximately one-third were annotated to the mitochondria following protein database analysis. IAB initiated apoptotic events including cytochrome c release, caspase-3 activation, and poly(ADP-ribose)polymerase (PARP) cleavage, whereas BMCC did not. Of the identified targets of IAB and BMCC, 44 were apoptosis-related proteins, and adduction site specificity on these targets differed between the two probes. Differences in sites of modification between these two electrophiles may reveal alkylation sites whose modification triggers apoptosis.


Assuntos
Biotina/análogos & derivados , Proteínas Mitocondriais/metabolismo , Apoptose , Biotina/toxicidade , Linhagem Celular , Humanos , Compostos de Sulfidrila/metabolismo
12.
Chem Res Toxicol ; 18(6): 913-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15962925

RESUMO

Among human P450s studied to date, P450 2A13 is the most efficient catalyst of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) alpha-hydroxylation. This reaction is a key bioactivation pathway in NNK-induced carcinogenesis. P450 2A13 mRNA has been detected in human tissues, but it is unknown whether the enzyme is functional in vivo. Therefore, we studied NNK alpha-hydroxylation in human fetal nasal mucosal microsomes, which have been shown to contain high levels of P450 2A protein, presumed to be a mixture of P450 2A6 and 2A13. The microsomes efficiently catalyzed NNK alpha-hydroxylation at the methylene and methyl carbons, as well as carbonyl reduction. Antibodies against mouse P450 2A5 inhibited alpha-hydroxylation by these microsomes greater than 90%. K(m) and V(max) values for alpha-methylene hydroxylation were 6.5 +/- 1.1 muM and 3.0 +/- 0.1 pmol/min/mg; for alpha-methyl hydroxylation, they were 6.7 +/- 0.8 microM and 0.85 +/- 0.03 pmol/min/mg. The K(m) values agree closely with those for NNK metabolism by P450 2A13. Using a new technique, we separated P450 2A13 from P450 2A6 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Quantitative immunoblot analysis indicated that the level of P450 2A13 in the pooled fetal nasal microsome sample used for kinetic analysis was approximately 1.6 pmol/mg protein. In the same sample, P450 2A6 was not detected (detection limit, 67 fmol/mg protein). These kinetic, immunoinhibition, and immunoblot data confirm that P450 2A13 is a functional enzyme and the catalyst of NNK alpha-hydroxylation in human fetal nasal mucosa. The results are also the first to demonstrate high efficiency NNK alpha-hydroxylation in a human tissue.


Assuntos
Carcinógenos/farmacocinética , Microssomos Hepáticos/enzimologia , Mucosa Nasal/enzimologia , Nitrosaminas/farmacocinética , Adulto , Biotransformação , Carcinógenos/metabolismo , Feminino , Feto , Idade Gestacional , Humanos , Hidroxilação , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/embriologia , Nitrosaminas/metabolismo , Nicotiana/metabolismo
13.
Chem Res Toxicol ; 18(1): 61-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15651850

RESUMO

N'-Nitrosonornicotine (NNN) and N-nitrosopiperidine (NPIP) are potent esophageal and nasal cavity carcinogens in rats and pulmonary carcinogens in mice. N-Nitrosopyrrolidine (NPYR) induces mainly liver tumors in rats and is a weak pulmonary carcinogen in mice. These nitrosamines may be causative agents in human cancer. alpha-Hydroxylation is believed to be the key activation pathway in their carcinogenesis. P450 2As are important enzymes of nitrosamine alpha-hydroxylation. Therefore, a structure-activity relationship study of rat P450 2A3, mouse P450 2A4 and 2A5, and human P450 2A6 and 2A13 was undertaken to compare the catalytic activities of these enzymes for alpha-hydroxylation of (R)-NNN, (S)-NNN, NPIP, and NPYR. Kinetic parameters differed significantly among the P450 2As although their amino acid sequence identities were 83% or greater. For NNN, alpha-hydroxylation can occur at the 2'- or 5'-carbon. P450 2As catalyzed 5'-hydroxylation of (R)- or (S)-NNN with Km values of 0.74-69 microM. All of the P450 2As except P450 2A6 catalyzed (R)-NNN 2'-hydroxylation with Km values of 0.73-66 microM. (S)-NNN 2'-hydroxylation was not observed. Although P450 2A4 and 2A5 differ by only 11 amino acids, they were the least and most efficient catalysts of NNN 5'-hydroxylation, respectively. The catalytic efficiencies (kcat/Km) for (R)-NNN differed by 170-fold whereas there was a 46-fold difference for (S)-NNN. In general, P450 2As catalyzed (R)- and (S)-NNN 5'-hydroxylation with significantly lower Km and higher kcat/Km values than NPIP or NPYR alpha-hydroxylation (p <0.05). Furthermore, P450 2As were better catalysts of NPIP alpha-hydroxylation than NPYR. P450 2A4, 2A5, 2A6, and 2A13 exhibited significantly lower Km and higher kcat/Km values for NPIP than NPYR alpha-hydroxylation (p <0.05), similar to previous reports with P450 2A3. Taken together, these data indicate that critical P450 2A residues determine the catalytic activities of NNN, NPIP, and NPYR alpha-hydroxylation.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Carcinógenos/metabolismo , N-Nitrosopirrolidina/metabolismo , Nitrosaminas/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Carcinógenos/química , Carcinógenos/toxicidade , Humanos , Hidroxilação/efeitos dos fármacos , Camundongos , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , N-Nitrosopirrolidina/química , N-Nitrosopirrolidina/toxicidade , Nitrosaminas/química , Nitrosaminas/toxicidade , Ratos , Especificidade da Espécie , Spodoptera/enzimologia , Relação Estrutura-Atividade
14.
Chem Res Toxicol ; 16(10): 1298-305, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14565771

RESUMO

N-Nitrosopiperidine (NPIP) is a potent rat nasal carcinogen whereas N-nitrosopyrrolidine (NPYR), a hepatic carcinogen, is weakly carcinogenic in the nose. NPIP and NPYR may be causative agents in human cancer. P450-catalyzed alpha-hydroxylation is the key activation pathway by which these nitrosamines elicit their carcinogenic effects. We hypothesize that the differences in NPIP and NPYR metabolic activation in the nasal cavity contribute to their differing carcinogenic activities. In this study, the kinetics of tritium-labeled NPIP or NPYR alpha-hydroxylation mediated by Sprague-Dawley rat nasal olfactory or respiratory microsomes were investigated. To compare alpha-hydroxylation rates of the two nitrosamines, tritiated 2-hydroxytetrahydro-2H-pyran and 2-hydroxy-5-methyltetrahydrofuran, the major NPIP alpha-hydroxylation products, and tritiated 2-hydroxytetrahydrofuran, the major NPYR alpha-hydroxylation product, were quantitated by HPLC with UV absorbance and radioflow detection. These microsomes catalyzed the alpha-hydroxylation of NPIP more efficiently than that of NPYR. K(M) values for NPIP were lower as compared to those for NPYR (13.9-34.7 vs 484-7660 muM). Furthermore, catalytic efficiencies (V(max)/K(M)) of NPIP were 20-37-fold higher than those of NPYR. Previous studies showed that P450 2A3, present in the rat nose, also exhibited this difference in catalytic efficiency. For both types of nasal microsomes, coumarin (100 muM), a P450 2A inhibitor, inhibited NPIP and NPYR alpha-hydroxylation from 63.8 to 98.5%. Furthermore, antibodies toward P450 2A6 inhibited nitrosamine alpha-hydroxylation in these microsomes from 68.8 to 78.4% whereas antibodies toward P450 2E1 did not inhibit these reactions. Further immunoinhibition studies suggest some role for P450 2G1 in NPIP metabolism by olfactory microsomes. In conclusion, olfactory and respiratory microsomes from rat nasal mucosa preferentially activate NPIP over NPYR with P450 2A3 likely playing a key role. These results are consistent with local metabolic activation of nitrosamines as a contributing factor in their tissue-specific carcinogenicity.


Assuntos
Microssomos/metabolismo , N-Nitrosopirrolidina/metabolismo , Mucosa Nasal/citologia , Mucosa Nasal/metabolismo , Nitrosaminas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2A6 , Inibidores Enzimáticos/farmacologia , Humanos , Hidroxilação/efeitos dos fármacos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Cinética , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , N-Nitrosopirrolidina/química , N-Nitrosopirrolidina/toxicidade , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/enzimologia , Nitrosaminas/química , Nitrosaminas/toxicidade , Ratos , Ratos Sprague-Dawley
15.
Carcinogenesis ; 24(2): 291-300, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12584180

RESUMO

N-nitrosopiperidine (NPIP) is a potent esophageal carcinogen in rats whereas structurally similar N-nitrosopyrrolidine (NPYR) induces liver, but not esophageal tumors. NPIP is a possible causative agent for human esophageal cancer. Our goal is to explain mechanistically these differing carcinogenic activities in the esophagus. We hypothesize that differences in metabolic activation of these nitrosamines could be one factor accounting for their differing carcinogenicity. alpha-Hydroxylation is the key metabolic activation pathway leading to nitrosamine-induced carcinogenesis. In this study, we examined the alpha-hydroxylation rates of [3,4-(3)H]NPIP and [3,4-(3)H]NPYR by male F344 rat esophageal and liver microsomes. The major alpha-hydroxylation products of NPIP and NPYR, 2-hydroxytetrahydro-2H-pyran (2-OH-THP) and 2-hydroxytetrahydrofuran (2-OH-THF), respectively, were monitored by high performance liquid chromatography with radioflow detection. NPIP or NPYR (4 microM) was incubated with varying concentrations of esophageal microsomes and co-factors. Microsomes converted NPIP to 2-OH-THP with a 40-fold higher velocity than NPYR to 2-OH-THF. Similar results were observed in studies with NPIP and NPYR at substrate concentrations between 4 and 100 micro M. Kinetics of NPIP alpha-hydroxylation were biphasic; K(M) values were 312 +/- 50 and 1600 +/- 312 microM. Expressed cytochrome P450 2A3, found in low levels in rat esophagus, was a good catalyst of NPIP alpha-hydroxylation (K(M) = 61.6 +/- 20.5 microM), but a poor catalyst of NPYR alpha-hydroxylation (K(m) = 1198 +/- 308 micro M). Cytochrome P450 2A3 may play a role in the preferential activation of NPIP observed in rat esophagus. Liver microsomes metabolized NPYR to 2-OH-THF (V(max)/K(M) = 3.23 pmol/min/mg/ microM) as efficiently as NPIP to 2-OH-THP (V(max)/K(M) = 3.80-4.61 pmol/min/mg/ microM). We conclude that rat esophageal microsomes activate NPIP but not NPYR whereas rat liver microsomes activate NPIP and NPYR. These results are consistent with previous findings that tissue-specific activation of nitrosamines contributes to tissue-specific tumor formation.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Esôfago/metabolismo , Microssomos Hepáticos/metabolismo , Microssomos/metabolismo , Oxigenases de Função Mista/metabolismo , N-Nitrosopirrolidina/metabolismo , Nitrosaminas/metabolismo , Animais , Biotransformação , Citocromo P-450 CYP2A6 , Esôfago/enzimologia , Hidroxilação , Masculino , Microssomos/enzimologia , Microssomos Hepáticos/enzimologia , N-Nitrosopirrolidina/farmacocinética , Nitrosaminas/farmacocinética , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA