Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Singapore Med J ; 63(2): 61-67, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32729311

RESUMO

The complete picture regarding transmission modes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. This review summarises the available evidence on its transmission modes, our preliminary research findings and implications for infection control policy, and outlines future research directions. Environmental contamination has been reported in hospital settings occupied by infected patients, and is higher in the first week of illness. Transmission via environmental surfaces or fomites is likely, but decontamination protocols are effective in minimising this risk. The extent of airborne transmission is also unclear. While several studies have detected SARS-CoV-2 ribonucleic acid in air samples, none has isolated viable virus in culture. Transmission likely lies on a spectrum between droplet and airborne transmission, depending on the patient, disease and environmental factors. Singapore's current personal protective equipment and isolation protocols are sufficient to manage this risk.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitais , Humanos , Controle de Infecções/métodos , Equipamento de Proteção Individual
2.
Infect Control Hosp Epidemiol ; 42(11): 1327-1332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33487210

RESUMO

BACKGROUND: Understanding the extent of aerosol-based transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for tailoring interventions for control of the coronavirus disease 2019 (COVID-19) pandemic. Multiple studies have reported the detection of SARS-CoV-2 nucleic acid in air samples, but only one study has successfully recovered viable virus, although it is limited by its small sample size. OBJECTIVE: We aimed to determine the extent of shedding of viable SARS-CoV-2 in respiratory aerosols from COVID-19 patients. METHODS: In this observational air sampling study, air samples from airborne-infection isolation rooms (AIIRs) and a community isolation facility (CIF) housing COVID-19 patients were collected using a water vapor condensation method into liquid collection media. Samples were tested for presence of SARS-CoV-2 nucleic acid using quantitative real-time polymerase chain reaction (qRT-PCR), and qRT-PCR-positive samples were tested for viability using viral culture. RESULTS: Samples from 6 (50%) of the 12 sampling cycles in hospital rooms were positive for SARS-CoV-2 RNA, including aerosols ranging from <1 µm to >4 µm in diameter. Of 9 samples from the CIF, 1 was positive via qRT-PCR. Viral RNA concentrations ranged from 179 to 2,738 ORF1ab gene copies per cubic meter of air. Virus cultures were negative after 4 blind passages. CONCLUSION: Although SARS-CoV-2 is readily captured in aerosols, virus culture remains challenging despite optimized sampling methodologies to preserve virus viability. Further studies on aerosol-based transmission and control of SARS-CoV-2 are needed.


Assuntos
COVID-19 , RNA Viral , Hospitais , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , SARS-CoV-2
3.
Infect Control Hosp Epidemiol ; 42(6): 669-677, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33081858

RESUMO

BACKGROUND: The risk of environmental contamination by severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in the intensive care unit (ICU) is unclear. We evaluated the extent of environmental contamination in the ICU and correlated this with patient and disease factors, including the impact of different ventilatory modalities. METHODS: In this observational study, surface environmental samples collected from ICU patient rooms and common areas were tested for SARS-CoV-2 by polymerase chain reaction (PCR). Select samples from the common area were tested by cell culture. Clinical data were collected and correlated to the presence of environmental contamination. Results were compared to historical data from a previous study in general wards. RESULTS: In total, 200 samples from 20 patient rooms and 75 samples from common areas and the staff pantry were tested. The results showed that 14 rooms had at least 1 site contaminated, with an overall contamination rate of 14% (28 of 200 samples). Environmental contamination was not associated with day of illness, ventilatory mode, aerosol-generating procedures, or viral load. The frequency of environmental contamination was lower in the ICU than in general ward rooms. Eight samples from the common area were positive, though all were negative on cell culture. CONCLUSION: Environmental contamination in the ICU was lower than in the general wards. The use of mechanical ventilation or high-flow nasal oxygen was not associated with greater surface contamination, supporting their use and safety from an infection control perspective. Transmission risk via environmental surfaces in the ICUs is likely to be low. Nonetheless, infection control practices should be strictly reinforced, and transmission risk via droplet or airborne spread remains.


Assuntos
COVID-19/transmissão , Infecção Hospitalar/transmissão , Unidades de Terapia Intensiva , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/virologia , Descontaminação/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quartos de Pacientes , Reação em Cadeia da Polimerase em Tempo Real , Respiração Artificial/efeitos adversos , Fatores de Risco
4.
Nat Commun ; 11(1): 2800, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472043

RESUMO

Understanding the particle size distribution in the air and patterns of environmental contamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA. Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms have at least one environmental surface contaminated. High touch surface contamination is shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond the first week of illness (p = 0.01, χ2 test). Air sampling is performed in three of the 27 AIIRs in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and 1-4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants further study of the airborne transmission potential of SARS-CoV-2.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Microbiologia Ambiental , Quartos de Pacientes , Pneumonia Viral/virologia , Adulto , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Estudos Transversais , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Tamanho da Partícula , Material Particulado/análise , Material Particulado/química , Pneumonia Viral/epidemiologia , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Fatores de Tempo
7.
Cells ; 9(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075271

RESUMO

Although the influenza A virus H7N9 subtype circulates within several avian species, it can also infect humans with a severe disease outcome. To better understand the biology of the H7N9 virus we examined the host response to infection in avian and human cells. In this study we used the A/Anhui/1/2013 strain, which was isolated during the first wave of the H7N9 epidemic. The H7N9 virus-infected both human (Airway Epithelial cells) and avian (Chick Embryo Fibroblast) cells, and each infected host transcriptome was examined with bioinformatic tools and compared with other representative avian and human influenza A virus subtypes. The H7N9 virus induced higher expression changes (differentially regulated genes) in both cell lines, with more prominent changes observed in avian cells. Ortholog mapping of differentially expression genes identified significant enriched common and cell-type pathways during H7N9 infections. This data confirmed our previous findings that different influenza A virus subtypes have virus-specific replication characteristics and anti-virus signaling in human and avian cells. In addition, we reported for the first time, the new HIPPO signaling pathway in avian cells, which we hypothesized to play a vital role to maintain the antiviral state of H7N9 virus-infected avian cells. This could explain the absence of disease symptoms in avian species that tested positive for the presence of H7N9 virus.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , Células A549 , Animais , Embrião de Galinha , Galinhas , Cães , Expressão Gênica , Humanos , Influenza Aviária/genética , Influenza Aviária/metabolismo , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/metabolismo , Transdução de Sinais
8.
Trop Med Infect Dis ; 3(1)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30274428

RESUMO

Melioidosis is a notifiable infectious disease registered with the Ministry of Health (MOH) and Agri-Food & Veterinary Authority (AVA), Singapore. From a clinical perspective, increased awareness of the disease has led to early detection and treatment initiation, thus resulting in decreasing mortality rates in recent years. However, the disease still poses a threat to local pet, zoo and farm animals, where early diagnosis is a challenge. The lack of routine environmental surveillance studies also makes prevention of the disease in animals difficult. To date, there have been no reports that provide a complete picture of how the disease impacts the local human and animal populations in Singapore. Information on the distribution of Burkholderia pseudomallei in the environment is also lacking. The aim of this review is to provide a comprehensive overview of both published and unpublished clinical, veterinary and environmental studies on melioidosis in Singapore to achieve better awareness and management of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA