Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Circ Heart Fail ; 17(4): e011095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626067

RESUMO

Heart failure (HF) is a well-described final common pathway for a broad range of diseases however substantial confusion exists regarding how to describe, study, and track these underlying etiologic conditions. We describe (1) the overlap in HF etiologies, comorbidities, and case definitions as currently used in HF registries led or managed by members of the global HF roundtable; (2) strategies to improve the quality of evidence on etiologies and modifiable risk factors of HF in registries; and (3) opportunities to use clinical HF registries as a platform for public health surveillance, implementation research, and randomized registry trials to reduce the global burden of noncommunicable diseases. Investment and collaboration among countries to improve the quality of evidence in global HF registries could contribute to achieving global health targets to reduce noncommunicable diseases and overall improvements in population health.


Assuntos
Insuficiência Cardíaca , Doenças não Transmissíveis , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Estudos Prospectivos , Fatores de Risco , Sistema de Registros
2.
Am J Transplant ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38514013

RESUMO

Xenotransplantation offers the potential to meet the critical need for heart and lung transplantation presently constrained by the current human donor organ supply. Much was learned over the past decades regarding gene editing to prevent the immune activation and inflammation that cause early organ injury, and strategies for maintenance of immunosuppression to promote longer-term xenograft survival. However, many scientific questions remain regarding further requirements for genetic modification of donor organs, appropriate contexts for xenotransplantation research (including nonhuman primates, recently deceased humans, and living human recipients), and risk of xenozoonotic disease transmission. Related ethical questions include the appropriate selection of clinical trial participants, challenges with obtaining informed consent, animal rights and welfare considerations, and cost. Research involving recently deceased humans has also emerged as a potentially novel way to understand how xeno-organs will impact the human body. Clinical xenotransplantation and research involving decedents also raise ethical questions and will require consensus regarding regulatory oversight and protocol review. These considerations and the related opportunities for xenotransplantation research were discussed in a workshop sponsored by the National Heart, Lung, and Blood Institute, and are summarized in this meeting report.

3.
J Am Coll Cardiol ; 81(15): 1524-1542, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36958952

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most common forms of heart failure; its prevalence is increasing, and outcomes are worsening. Affected patients often experience severe exertional dyspnea and debilitating fatigue, as well as poor quality of life, frequent hospitalizations, and a high mortality rate. Until recently, most pharmacological intervention trials for HFpEF yielded neutral primary outcomes. In contrast, trials of exercise-based interventions have consistently demonstrated large, significant, clinically meaningful improvements in symptoms, objectively determined exercise capacity, and usually quality of life. This success may be attributed, at least in part, to the pleiotropic effects of exercise, which may favorably affect the full range of abnormalities-peripheral vascular, skeletal muscle, and cardiovascular-that contribute to exercise intolerance in HFpEF. Accordingly, this scientific statement critically examines the currently available literature on the effects of exercise-based therapies for chronic stable HFpEF, potential mechanisms for improvement of exercise capacity and symptoms, and how these data compare with exercise therapy for other cardiovascular conditions. Specifically, data reviewed herein demonstrate a comparable or larger magnitude of improvement in exercise capacity from supervised exercise training in patients with chronic HFpEF compared with those with heart failure with reduced ejection fraction, although Medicare reimbursement is available only for the latter group. Finally, critical gaps in implementation of exercise-based therapies for patients with HFpEF, including exercise setting, training modalities, combinations with other strategies such as diet and medications, long-term adherence, incorporation of innovative and more accessible delivery methods, and management of recently hospitalized patients are highlighted to provide guidance for future research.


Assuntos
Cardiologia , Insuficiência Cardíaca , Idoso , Humanos , Estados Unidos/epidemiologia , Insuficiência Cardíaca/terapia , Qualidade de Vida , Volume Sistólico/fisiologia , American Heart Association , Tolerância ao Exercício/fisiologia , Medicare , Exercício Físico/fisiologia
4.
Circulation ; 147(16): e699-e715, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36943925

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most common forms of heart failure; its prevalence is increasing, and outcomes are worsening. Affected patients often experience severe exertional dyspnea and debilitating fatigue, as well as poor quality of life, frequent hospitalizations, and a high mortality rate. Until recently, most pharmacological intervention trials for HFpEF yielded neutral primary outcomes. In contrast, trials of exercise-based interventions have consistently demonstrated large, significant, clinically meaningful improvements in symptoms, objectively determined exercise capacity, and usually quality of life. This success may be attributed, at least in part, to the pleiotropic effects of exercise, which may favorably affect the full range of abnormalities-peripheral vascular, skeletal muscle, and cardiovascular-that contribute to exercise intolerance in HFpEF. Accordingly, this scientific statement critically examines the currently available literature on the effects of exercise-based therapies for chronic stable HFpEF, potential mechanisms for improvement of exercise capacity and symptoms, and how these data compare with exercise therapy for other cardiovascular conditions. Specifically, data reviewed herein demonstrate a comparable or larger magnitude of improvement in exercise capacity from supervised exercise training in patients with chronic HFpEF compared with those with heart failure with reduced ejection fraction, although Medicare reimbursement is available only for the latter group. Finally, critical gaps in implementation of exercise-based therapies for patients with HFpEF, including exercise setting, training modalities, combinations with other strategies such as diet and medications, long-term adherence, incorporation of innovative and more accessible delivery methods, and management of recently hospitalized patients are highlighted to provide guidance for future research.


Assuntos
Cardiologia , Insuficiência Cardíaca , Idoso , Humanos , Estados Unidos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Qualidade de Vida , Volume Sistólico/fisiologia , American Heart Association , Tolerância ao Exercício/fisiologia , Medicare , Exercício Físico/fisiologia
5.
J Extracell Vesicles ; 12(2): e12305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36775986

RESUMO

Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Estados Unidos , Vesículas Extracelulares/metabolismo , Comunicação Celular , Ácidos Nucleicos/metabolismo , Pulmão/metabolismo , Sono
6.
Circ Res ; 131(8): 713-724, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173825

RESUMO

Spurred by the 2016 release of the National Heart, Lung, and Blood Institute's Strategic Vision, the Division of Cardiovascular Sciences developed its Strategic Vision Implementation Plan-a blueprint for reigniting the decline in cardiovascular disease (CVD) mortality rates, improving health equity, and accelerating translation of scientific discoveries into better cardiovascular health (CVH). The 6 scientific focus areas of the Strategic Vision Implementation Plan reflect the multifactorial nature of CVD and include (1) addressing social determinants of CVH and health inequities, (2) enhancing resilience, (3) promoting CVH and preventing CVD across the lifespan, (4) eliminating hypertension-related CVD, (5) reducing the burden of heart failure, and (6) preventing vascular dementia. This article presents an update of strategic vision implementation activities within Division of Cardiovascular Sciences. Overarching and cross-cutting themes include training the scientific workforce and engaging the extramural scientific community to stimulate transformative research in cardiovascular sciences. In partnership with other NIH Institutes, Federal agencies, industry, and the extramural research community, Division of Cardiovascular Sciences strategic vision implementation has stimulated development of numerous workshops and research funding opportunities. Strategic Vision Implementation Plan activities highlight innovative intervention modalities, interdisciplinary systems approaches to CVD reduction, a life course framework for CVH promotion and CVD prevention, and multi-pronged research strategies for combatting COVID-19. As new knowledge, technologies, and areas of scientific research emerge, Division of Cardiovascular Sciences will continue its thoughtful approach to strategic vision implementation, remaining poised to seize emerging opportunities and catalyze breakthroughs in cardiovascular sciences.


Assuntos
COVID-19 , Cardiopatias , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos/epidemiologia
7.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769940

RESUMO

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Assuntos
Sistema Cardiovascular , Educação/métodos , Insuficiência Cardíaca/terapia , Mitocôndrias/fisiologia , National Heart, Lung, and Blood Institute (U.S.) , Relatório de Pesquisa , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Sistema Cardiovascular/patologia , Educação/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologia
8.
Circ Res ; 124(4): 491-497, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31031412

RESUMO

As we commemorate the 70th Anniversary of the National Heart, Lung, and Blood Institute (NHLBI) and celebrate important milestones that have been achieved by the Division of Cardiovascular Sciences (DCVS), it is imperative that DCVS and the Extramural Research community at-large continue to address critical public health challenges that persist within the area of Cardiovascular Diseases (CVD). The NHLBI's Strategic Vision, developed with extensive input from the extramural research community and published in 2016, included overarching goals and strategic objectives that serve to provide a general blueprint for sustaining the legacy of the Institute by leveraging opportunities in emerging scientific areas (e.g., regenerative medicine, omics technology, data science, precision medicine, and mobile health), finding new ways to address enduring challenges (e.g., social determinants of health, health inequities, prevention, and health promotion), and training the next generation of heart, lung, blood, and sleep researchers. DCVS has developed a strategic vision implementation plan to provide a cardiovascular framing for the pursuit of the Institute's overarching goals and strategic objectives garnered from the input of the broader NHLBI community. This plan highlights six scientific focus areas that demonstrate a cross-cutting and multifaceted approach to addressing cardiovascular sciences, including 1) addressing social determinants of cardiovascular health (CVH) and health inequities, 2) enhancing resilience, 3) promoting CVH and preventing CVD Across the lifespan, 4) eliminating hypertension-related CVD, 5) reducing the burden of heart failure, and 6) preventing vascular dementia. These priorities will guide our efforts in Institute-driven activities in the coming years but will not exclude development of other novel ideas or the support of investigator-initiated grant awards. The DCVS Strategic Vision implementation plan is a living document that will evolve with iterative dialogue with the NHLBI community and adapt as the dynamic scientific landscape changes to seize emerging opportunities.


Assuntos
Cardiologia/normas , Doenças Cardiovasculares/terapia , National Heart, Lung, and Blood Institute (U.S.) , Guias de Prática Clínica como Assunto , Cardiologia/economia , Cardiologia/tendências , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Humanos , Estados Unidos
9.
AIDS Res Hum Retroviruses ; 33(9): 889-897, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28530113

RESUMO

The National Heart, Lung, and Blood Institute (NHLBI) AIDS Program's goal is to provide direction and support for research and training programs in areas of HIV-related heart, lung, blood, and sleep (HLBS) diseases. To better define NHLBI current HIV-related scientific priorities and with the goal of identifying new scientific priorities and gaps in HIV-related HLBS research, a wide group of investigators gathered for a scientific NHLBI HIV Working Group on December 14-15, 2015, in Bethesda, MD. The core objectives of the Working Group included discussions on: (1) HIV-related HLBS comorbidities in the antiretroviral era; (2) HIV cure; (3) HIV prevention; and (4) mechanisms to implement new scientific discoveries in an efficient and timely manner so as to have the most impact on people living with HIV. The 2015 Working Group represented an opportunity for the NHLBI to obtain expert advice on HIV/AIDS scientific priorities and approaches over the next decade.


Assuntos
Infecções por HIV/epidemiologia , Cardiopatias/epidemiologia , Doenças Hematológicas/epidemiologia , Pneumopatias/epidemiologia , Transtornos do Sono-Vigília/epidemiologia , Pesquisa Biomédica/métodos , Comorbidade , Humanos
11.
Health Policy Plan ; 31(5): 563-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26856361

RESUMO

Understanding post-launch demand for new vaccines can help countries maximize the benefits of immunization programmes. In particular, low- and middle-income countries (LMICs) should ensure adequate resource planning with regards to stock consumption and service delivery for new vaccines, whereas global suppliers must produce enough vaccines to meet demand. If a country underestimates the number of children seeking vaccination, a stock-out of commodities will create missed opportunities for saving lives. We describe the post-launch demand for the first dose of pneumococcal conjugate vaccine (PCV1) in Ethiopia and Malawi and the first dose of rotavirus vaccine (Rota1) in Malawi, with focus on the new birth cohort and the 'backlog cohort', comprised of older children who are still eligible for vaccination at the time of launch. PCV1 and Rota1 uptake were compared with the demand for the first dose of pentavalent vaccine (Penta1), a routine immunization that targets the same age group and immunization schedule. In the first year, the total demand for PCV1 was 37% greater than that of Penta1 in Ethiopia and 59% greater in Malawi. In the first 6 months, the demand of Rota1 was only 5.9% greater than Penta1 demand in Malawi. Over the first three post-introduction months, 70.7% of PCV1 demand in Ethiopia and 71.5% of demand in Malawi came from children in the backlog cohort, whereas only 28.0% of Rota1 demand in Malawi was from the backlog cohort. The composition of demand was impacted by time elapsed since vaccine introduction and age restrictions. Evidence suggests that countries' plans should account for the impact of backlog demand, especially in the first 3 months post-introduction. LMICs should request for higher stock volumes when compared with routine needs, plan social mobilization activities to reach the backlog cohort and allocate human resources and cold chain capacity to accommodate high demand following vaccine introduction.


Assuntos
Necessidades e Demandas de Serviços de Saúde , Programas de Imunização , Esquemas de Imunização , Vacinas Pneumocócicas/administração & dosagem , Vacinas contra Rotavirus/administração & dosagem , Pré-Escolar , Países em Desenvolvimento , Etiópia , Humanos , Lactente , Malaui , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/prevenção & controle , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Vacinação
13.
Circ Res ; 117(3): 234-8, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26185209

RESUMO

Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles.


Assuntos
Programas Governamentais/organização & administração , Cardiopatias/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/fisiologia , National Heart, Lung, and Blood Institute (U.S.)/organização & administração , Comportamento Cooperativo , Previsões , Cardiopatias/metabolismo , Cardiopatias/terapia , Humanos , Comunicação Interdisciplinar , Invenções , Computação em Informática Médica , Modelos Cardiovasculares , Miócitos Cardíacos/ultraestrutura , Avaliação de Programas e Projetos de Saúde , Biologia de Sistemas , Terapias em Estudo , Pesquisa Translacional Biomédica , Estados Unidos , Universidades
14.
J Am Coll Cardiol ; 65(7): 738-44, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25677433

RESUMO

The clinical challenges confronting patients with human immunodeficiency virus (HIV) have shifted from acquired immunodeficiency syndrome (AIDS)-related illnesses to chronic diseases, such as coronary artery disease, chronic lung disease, and chronic anemia. With the growing burden of HIV-related heart, lung, and blood (HLB) disease, the National Heart, Lung, and Blood Institute (NHLBI) recognizes it must stimulate and support HIV-related HLB research. Because HIV offers a natural, accelerated model of common pathological processes, such as inflammation, HIV-related HLB research may yield important breakthroughs for all patients with HLB disease. This paper summarizes the cardiovascular recommendations of an NHLBI Working Group, Advancing HIV/AIDS Research in Heart, Lung, and Blood Diseases, charged with identifying scientific priorities in HIV-related HLB disease and developing recommendations to promote multidisciplinary collaboration among HIV and HLB investigators. The working group included multidisciplinary sessions, as well as HLB breakout sessions for discussion of disease-specific issues, with common themes about scientific priorities and strategies to stimulate HLB research emerging in all 3 groups.


Assuntos
Pesquisa Biomédica/organização & administração , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/terapia , Infecções por HIV/complicações , Infecções por HIV/terapia , National Heart, Lung, and Blood Institute (U.S.) , Protocolos Clínicos , Prioridades em Saúde , Humanos , Estados Unidos
15.
Nutr Clin Pract ; 30(1): 122-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25216737

RESUMO

OBJECTIVE: The purpose of this study was to determine the prevalence of low vitamin B12 (VB12) in patients on admission to an amputation rehabilitation unit and identify specific populations at risk. METHODS: A retrospective chart review was performed for 127 participants comprising patients with major lower limb amputations admitted to a regional amputation rehabilitation program between January 1, 2011 and December 31, 2012. Electronic medical records were reviewed for demographic data, amputation data, medication history, serum VB12 levels, and other related blood work. A literature-based cutoff of VB12 <260 pmol/L was used as the criterion for low VB12. RESULTS: The prevalence of low VB12 was 59.8%. Patients aged ≥55 years were found to have an increased prevalence of low VB12 (P = .05). Serum VB12 levels were significantly lower among patients aged ≥55 years (P < .05) and among patients with a mean corpuscular volume >97 fL (P < .01). No other differences in prevalence were determined among different demographics, etiologies, or comorbidities. CONCLUSIONS: Patients with an amputation have a high prevalence of low VB12 levels compared with the general population. Low VB12 status may impact rehabilitation outcomes through anemia, cognitive decline, and neuropathy. No reliable indicators for which patients should be screened were found, and therefore, a universal approach to screening and treatment is needed.


Assuntos
Amputação Cirúrgica/reabilitação , Deficiência de Vitamina B 12/dietoterapia , Deficiência de Vitamina B 12/diagnóstico , Vitamina B 12/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Amputação Cirúrgica/métodos , Feminino , Unidades Hospitalares , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Reabilitação/métodos , Estudos Retrospectivos , Vitamina B 12/sangue , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/epidemiologia , Adulto Jovem
16.
Circ Res ; 113(12): 1308-19, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24062335

RESUMO

RATIONALE: Mice lacking cyclophilin D (CypD(-/-)), a mitochondrial chaperone protein, have altered cardiac metabolism. As acetylation has been shown to regulate metabolism, we tested whether changes in protein acetylation might play a role in these metabolic changes in CypD(-/-) hearts. OBJECTIVE: Our aim was to test the hypothesis that loss of CypD alters the cardiac mitochondrial acetylome. METHODS AND RESULTS: To identify changes in lysine-acetylated proteins and to map acetylation sites after ablation of CypD, we subjected tryptic digests of isolated cardiac mitochondria from wild-type and CypD(-/-) mice to immunoprecipitation using agarose beads coupled to antiacetyl lysine antibodies followed by mass spectrometry. We used label-free analysis for the relative quantification of the 875 common peptides that were acetylated in wild-type and CypD(-/-) samples and found 11 peptides (10 proteins) decreased and 96 peptides (48 proteins) increased in CypD(-/-) samples. We found increased acetylation of proteins in fatty acid oxidation and branched-chain amino acid metabolism. To evaluate whether this increase in acetylation might play a role in the inhibition of fatty acid oxidation that was previously reported in CypD(-/-) hearts, we measured the activity of l-3-hydroxyacyl-CoA dehydrogenase, which was acetylated in the CypD(-/-) hearts. Consistent with the hypothesis, l-3-hydroxyacyl-CoA dehydrogenase activity was inhibited by ≈50% compared with the wild-type mitochondria. CONCLUSIONS: These results implicate a role for CypD in modulating protein acetylation. Taken together, these results suggest that ablation of CypD leads to changes in the mitochondrial acetylome, which may contribute to altered mitochondrial metabolism in CypD(-/-) mice.


Assuntos
Ciclofilinas/fisiologia , Mitocôndrias Cardíacas/metabolismo , Acetilação , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/deficiência , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteoma/genética
17.
J Mol Cell Cardiol ; 56: 81-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23262437

RESUMO

Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Ciclo do Ácido Cítrico , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Ácido Pirúvico/metabolismo , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/deficiência , Ciclofilinas/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Consumo de Oxigênio , Propionatos/metabolismo , Proteoma/metabolismo
18.
Nature ; 492(7428): 199-204, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201684

RESUMO

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Assuntos
Necrose/enzimologia , Sirtuína 2/genética , Sirtuína 2/metabolismo , Acetilação , Animais , Linhagem Celular , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Masculino , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 302(11): H2439-45, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22467305

RESUMO

Recent data have shown that cardioprotection can result in the import of specific proteins into the mitochondria in a process that involves heat shock protein 90 (HSP90) and is blocked by geldanamycin (GD), a HSP90 inhibitor. To test the hypothesis that an alteration in mitochondrial import is a more widespread feature of cardioprotection, in this study, we used a broad-based proteomics approach to investigate changes in the mitochondrial proteome following cardioprotection induced by inhibition of glycogen synthase kinase (GSK)-3. Mitochondria were isolated from control hearts, and hearts were perfused with the GSK inhibitor SB 216763 (SB) for 15 min before isolation of mitochondria. Mitochondrial extracts from control and SB-perfused hearts were labeled with isotope tags for relative and absolute quantification (iTRAQ), and differences in mitochondrial protein levels were determined by mass spectrometry. To test for the role of HSP90-mediated protein import, hearts were perfused in the presence and absence of GD for 15 min before perfusion with SB followed by mitochondrial isolation and iTRAQ labeling. We confirmed that treatment with GD blocked the protection afforded by SB treatment in a protocol of 20 min of ischemia and 40 min of reperfusion. We found 16 proteins that showed an apparent increase in the mitochondrial fraction following SB treatment. GD treatment significantly blocked the SB-mediated increase in mitochondrial association for five of these proteins, which included annexin A6, vinculin, and pyruvate kinase. We also found that SB treatment resulted in a decrease in mitochondrial content of eight proteins, of which all but two are established mitochondrial proteins. To confirm a role for mitochondrial import versus a change in protein synthesis and/or degradation, we measured changes in these proteins in whole cell extracts. Taken together, these data show that SB leads to a remodeling of the mitochondrial proteome that is partially GD sensitive.


Assuntos
Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Indóis/farmacologia , Maleimidas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteoma/efeitos dos fármacos , Animais , Anexina A6/metabolismo , Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/fisiologia , Lactamas Macrocíclicas/farmacologia , Masculino , Modelos Animais , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley , Vinculina/metabolismo
20.
Circ Res ; 110(7): 915-21, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461362

RESUMO

Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature's solutions to heart, lung, blood, and sleep disorders through future research in this area.


Assuntos
Pesquisa Biomédica/tendências , Cardiopatias/terapia , Doenças Hematológicas/terapia , Pneumopatias/terapia , Modelos Animais , Transtornos do Sono-Vigília/terapia , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Mergulho/fisiologia , Hibernação/fisiologia , Humanos , Hipóxia/fisiopatologia , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA