Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022215

RESUMO

ß-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-ß-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-ß-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing ß-glucans with different lengths of oligo-ß-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a ß-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-ß-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these ß-glucan-specific mAbs could be useful in combinatorial antifungal therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antifúngicos/farmacologia , Antígenos de Fungos/imunologia , Candidíase/tratamento farmacológico , beta-Glucanas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antifúngicos/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/imunologia , Candida albicans/efeitos dos fármacos , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Fluconazol/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento
2.
J Org Chem ; 83(21): 12965-12976, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277398

RESUMO

Biotinylated hepta-, nona- and undeca-α-(1 → 3)-d-glucosides representing long oligosaccharides of α-(1 → 3)-d-glucan, one of the major components of the cell walls of the fungal pathogen Aspergillus fumigatus, were synthesized for the first time via a blockwise strategy. Convergent assembly of the α-(1 → 3)-d-glucan chains was achieved by glycosylation with oligoglucoside derivatives bearing 6- O-benzoyl groups. Those groups are capable of remote α-stereocontrolling participation, making them efficient α-directing tools even in the case of large glycosyl donors. Synthetic biotinylated oligoglucosides (and biotinylated derivatives of previously synthesized tri- and penta-α-(1 → 3)-d-glucosides) loaded on streptavidin microtiter plates were shown to be better recognized by anti-α-(1 → 3)-glucan human polyclonal antibodies and to induce higher cytokine responses upon stimulation of human peripheral blood mononuclear cells than their natural counterpart, α-(1 → 3)-d-glucan, immobilized on a conventional microtiter plate. Attachment of the synthetic oligosaccharides equipped with a hydrophilic spacer via the streptavidin-biotin pair allows better spatial presentation and control of the loading compared to the random sorption of natural α-(1 → 3)-glucan. Increase of oligoglucoside length results in their better recognition and enhancement of cytokine production. Thus, using synthetic α-(1 → 3)-glucan oligosaccharides, we developed an assay for the host immune response that is more sensitive than the assay based on native α-(1 → 3)-glucan.


Assuntos
Anticorpos Monoclonais/imunologia , Aspergillus fumigatus , Parede Celular/química , Citocinas/metabolismo , Glucanos/imunologia , Glucosídeos/síntese química , Biotinilação , Glucanos/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
3.
Front Microbiol ; 7: 216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955369

RESUMO

Candida bloodstream infections (CBI) are one of the most common nosocomial infections globally, and they account for a high mortality rate. The increasing global prevalence of drug-resistant Candida strains has also been posing a challenge to clinicians. In this study, we comprehensively evaluated the biofilm formation and production of hemolysin and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well as their antifungal susceptibility both in the presence and in the absence of human serum, using standard methodology. Candida albicans was the predominant species among the 63 CBI isolates collected, and non-albicans Candida species accounted for approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the most common non-albicans Candida species. A high proportion (31.7%) of the CBI isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole. One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of drug-resistance CBI isolates in Hong Kong was observed with reference to a previous study. Notably, all non-albicans Candida species, showed increased hemolytic activity relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited proteinase activities. Majority of the isolates were capable of forming mature biofilms. Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but not amphotericin B. Taken together, our findings demonstrate that CBI isolates of Candida have the potential to express to varying extent their virulence attributes (e.g., biofilm formation, hemolysin production, and proteinase activity) and these, together with perturbations in their antifungal sensitivity in the presence of serum, may contribute to treatment complication in candidemia. The effect of serum on antifungal activity warrants further investigations, as it has direct clinical relevance to the treatment outcome in subjects with candidemia.

4.
BMC Oral Health ; 15: 39, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25887752

RESUMO

BACKGROUND: During a research project on fungal Candida species in patients wearing obturator treated with radiotherapy for their recurrent nasopharyngeal carcinoma, we serendipitously observed the presence of black fungus in two consecutive samples from a patient. CASE PRESENTATION: The samples were collected from a 57 year-old Hong Kong gentleman who diagnosed to have undifferentiated type of nasopharyngeal carcinoma. He was treated with definitive concurrent chemoradiotherapy followed by adjuvant chemotherapy and then received a second-course radiotherapy with IMRT. 18S rDNA sequencing revealed that the isolates belong to Exophiala dermatitidis which was susceptible to fluconazole, itraconazole, ketoconazole and voriconazole. Interestingly, E. dermatitidis isolates were resistant to caspofungin and one isolate was resistant to amphotericin B. Both isolates formed biofilms comparable to that of Candida albicans. Single isolate of E. dermatitidis showed hemolysin and proteinase ability comparable to C. albicans whilst the other isolate was not. CONCLUSION: We, for the first time, reported the discovery of a black fungus-E. dermatitidis isolates derived from a patient with nasopharyngeal carcinoma treated with radiotherapy. These isolates were shown to be resistant to caspofungin, a major antifungal agent for systemic candidiasis. As little is known about the black fungus in the clinical setting, it is important that clinicians must keep abreast of the new discovery in this field.


Assuntos
Antifúngicos/uso terapêutico , Carcinoma/radioterapia , Exophiala/efeitos dos fármacos , Doenças da Boca/microbiologia , Neoplasias Nasofaríngeas/radioterapia , Infecções Oportunistas/tratamento farmacológico , Feoifomicose/tratamento farmacológico , Anfotericina B/farmacologia , Biofilmes/efeitos dos fármacos , Caspofungina , Quimiorradioterapia/métodos , Quimioterapia Adjuvante , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Exophiala/isolamento & purificação , Fluconazol/uso terapêutico , Humanos , Hospedeiro Imunocomprometido , Itraconazol/uso terapêutico , Cetoconazol/uso terapêutico , Lipopeptídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Radioterapia de Intensidade Modulada , Voriconazol/uso terapêutico
5.
Drug Discov Today ; 19(11): 1721-1730, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24952336

RESUMO

Candida infections have created a great burden on the public healthcare sector. The situation is worsened by recent epidemiological changes. Furthermore, the current arsenal of antifungal agents is limited and associated with undesirable drawbacks. Therefore, new antifungal agents that surpass the existing ones are urgently needed. High-throughput screening of small molecule libraries enables rapid hit identification and, possibly, increases hit rate. Moreover, the identified hits could be associated with unrecognized or multiple drug targets, which would provide novel insights into the biological processes of the pathogen. Hence, it is proposed that high-throughput screening of small molecules is particularly important in the pursuit of the ideal antifungal agents for Candida infections.


Assuntos
Antifúngicos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Animais , Antifúngicos/uso terapêutico , Candida , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica , Humanos , Bibliotecas de Moléculas Pequenas
6.
Proteomics ; 12(4-5): 651-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22246638

RESUMO

Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Farmacorresistência Fúngica , Farmacorresistência Bacteriana Múltipla , Fungos/efeitos dos fármacos , Proteômica/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Fungos/fisiologia , Humanos , Estresse Oxidativo , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA